首页> 外文期刊>Communications in Statistics >A Bootstrap Approach for Testing Marginal Independence Between Two Categorical Variables When Subjects Have Repeated Responses
【24h】

A Bootstrap Approach for Testing Marginal Independence Between Two Categorical Variables When Subjects Have Repeated Responses

机译:主题重复反应时测试两个分类变量之间的边际独立性的一种引导方法

获取原文
获取原文并翻译 | 示例

摘要

To assess independence in two-way contingency tables, the Pearson chi-square test or Fisher's exact test are typically used. These tests assume that each subject contributes at most one count to only one table cell (e. g., sex versus blood type). In other situations, each subject may have more than one count contributing to the table and these counts may occur in different cells of the table. One may wish to test independence, adjusting for the within-subject correlation. We provide a simple nonparametric bootstrap approach and assess its performance through simulation studies. The method is illustrated on subjects with multiple mental health presentations to Emergency Departments.
机译:为了评估双向列联表的独立性,通常使用Pearson卡方检验或Fisher精确检验。这些测试假设每个受试者最多仅对一个表细胞贡献一个计数(例如,性别对血型)。在其他情况下,每个主题可能有一个以上的计数有助于表格,并且这些计数可能出现在表格的不同单元格中。人们可能希望测试独立性,调整受试者内部的相关性。我们提供了一种简单的非参数引导程序,并通过仿真研究评估了其性能。对该方法进行了说明,并向急诊科进行了多次心理健康演示。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号