首页> 外文期刊>Communications in Statistics >On the application of statistical learning approaches to construct inverse probability weights in marginal structural Cox models: Hedging against weight-model misspecification
【24h】

On the application of statistical learning approaches to construct inverse probability weights in marginal structural Cox models: Hedging against weight-model misspecification

机译:关于统计学习方法在边际结构Cox模型中构建逆概率权重的应用:对付权重模型错误指定的对冲

获取原文
获取原文并翻译 | 示例

摘要

The marginal structural Cox model (MSCM) estimates can be highly sensitive to weight-model misspecification. We assess the performance of various popular statistical learners, such as LASSO, support vector machines, CART, bagged CART, and boosted CART, in estimating MSCM weights. When weight-models are misspecified, we find that the weights computed from boosted CART generally lead to less MSE and better coverage for the MSCM estimates. This study is motivated by the investigation of the impact of beta-interferon treatment on disability progression in subjects with multiple sclerosis from British Columbia, Canada (1995-2008).
机译:边缘结构Cox模型(MSCM)估计值可能对重量模型的错误指定高度敏感。我们评估各种流行的统计学习者(如LASSO,支持向量机,CART,袋装CART和增强型CART)在估计MSCM权重方面的表现。当权重模型指定不正确时,我们发现从提升的CART计算得出的权重通常会导致MSE减少,并且MSCM估计的覆盖范围会更好。这项研究的动机是对来自加拿大不列颠哥伦比亚省的多发性硬化患者中β-干扰素治疗对残疾进展的影响进行调查(1995-2008年)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号