首页> 外文期刊>Communications in Statistics >Simulation-based model comparison methodology with application to road accident models
【24h】

Simulation-based model comparison methodology with application to road accident models

机译:基于仿真的模型比较方法在道路交通事故模型中的应用

获取原文
获取原文并翻译 | 示例

摘要

This article assumes the goal of proposing a simulation-based theoretical model comparison methodology with application to two time series road accident models. The model comparison exercise helps to quantify the main differences and similarities between the two models and comprises of three main stages: (1) simulation of time series through a true model with predefined properties; (2) estimation of the alternative model using the simulated data; (3) sensitivity analysis to quantify the effect of changes in the true model parameters on alternative model parameter estimates through analysis of variance, ANOVA. The proposed methodology is applied to two time series road accident models: UCM (unobserved components model) and DRAG (Demand for Road Use, Accidents and their Severity). Assuming that the real data-generating process is the UCM, new datasets approximating the road accident data are generated, and DRAG models are estimated using the simulated data. Since these two methodologies are usually assumed to be equivalent, in a sense that both models accurately capture the true effects of the regressors, we are specifically addressing the modeling of the stochastic trend, through the alternative model. Stochastic trend is the time-varying component and is one of the crucial factors in time series road accident data. Theoretically, it can be easily modeled through UCM, given its modeling properties. However, properly capturing the effect of a non-stationary component such as stochastic trend in a stationary explanatory model such as DRAG is challenging. After obtaining the parameter estimates of the alternative model (DRAG), the estimates of both true and alternative models are compared and the differences are quantified through experimental design and ANOVA techniques. It is observed that the effects of the explanatory variables used in the UCM simulation are only partially captured by the respective DRAG coefficients. This a priori, could be due to multicollinearity but the results of both simulation of UCM data and estimating of DRAG models reveal that there is no significant static correlation among regressors. Moreover, in fact, using ANOVA, it is determined that this regression coefficient estimation bias is caused by the presence of the stochastic trend present in the simulated data. Thus, the results of the methodological development suggest that the stochastic component present in the data should be treated accordingly through a preliminary, exploratory data analysis.
机译:本文假设目标是提出一种基于仿真的理论模型比较方法,并将其应用于两个时间序列道路事故模型。模型比较练习有助于量化两个模型之间的主要差异和相似性,包括三个主要阶段:(1)通过具有预定义属性的真实模型对时间序列进行仿真; (2)使用模拟数据估算替代模型; (3)敏感性分析,通过方差分析(ANOVA)量化真实模型参数变化对替代模型参数估计值的影响。所提出的方法应用于两个时间序列道路事故模型:UCM(未观察到的分量模型)和DRAG(道路使用,事故及其严重性需求)。假设真正的数据生成过程是UCM,则会生成近似于道路事故数据的新数据集,并使用模拟数据来估计DRAG模型。由于通常假定这两种方法是等效的,因此从某种意义上说,这两个模型都能准确地反映回归变量的真实影响,因此,我们正在通过替代模型来专门解决随机趋势的建模问题。随机趋势是随时间变化的组成部分,是时间序列道路事故数据中的关键因素之一。从理论上讲,鉴于其建模属性,可以通过UCM轻松对其进行建模。但是,在静态解释模型(例如DRAG)中正确捕获非平稳成分(例如随机趋势)的影响具有挑战性。在获得替代模型(DRAG)的参数估计值之后,比较真实模型和替代模型的估计值,并通过实验设计和ANOVA技术对差异进行量化。可以看出,在UCM仿真中使用的解释变量的作用仅被相应的DRAG系数部分捕获。先验的可能是由于多重共线性,但是UCM数据模拟和DRAG模型估计的结果都表明,回归变量之间没有显着的静态相关性。此外,实际上,使用方差分析可以确定此回归系数估计偏差是由模拟数据中存在的随机趋势引起的。因此,方法学发展的结果表明,应通过初步的探索性数据分析来相应地处理数据中存在的随机成分。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号