首页> 外文期刊>Communications in Statistics >Optimal non-diagonal-type estimators in linear regression under the prediction error sum of squares criterion
【24h】

Optimal non-diagonal-type estimators in linear regression under the prediction error sum of squares criterion

机译:预测误差平方和准则下线性回归的最优非对角型估计

获取原文
获取原文并翻译 | 示例

摘要

This article considers the notion of the non-diagonal-type estimator (NDTE) under the prediction error sum of squares (PRESS) criterion. First, the optimal NDTE in the PRESS sense is derived theoretically and applied to the cosmetics sales data. Second, we make a further study to extend the NDTE to the general case of the covariance matrix of the model and then give a Bayesian explanation for this extension. Third, two remarks concerned with some potential shortcomings of the NDTE are presented and an alternative solution is provided and illustrated by means of simulations.
机译:本文考虑了预测误差平方和(PRESS)准则下的非对角线型估计器(NDTE)的概念。首先,从理论上推导PRESS方向上的最佳NDTE并将其应用于化妆品销售数据。其次,我们进行了进一步的研究以将NDTE扩展到模型协方差矩阵的一般情况,然后对此扩展给出贝叶斯解释。第三,提出了与NDTE的某些潜在缺陷有关的两个评论,并提供了一种替代解决方案,并通过仿真进行了说明。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号