首页> 外文期刊>Communications in Statistics >Computing AIC for black-box models using generalized degrees of freedom: A comparison with cross-validation
【24h】

Computing AIC for black-box models using generalized degrees of freedom: A comparison with cross-validation

机译:使用广义自由度为黑盒模型计算AIC:与交叉验证的比较

获取原文
获取原文并翻译 | 示例

摘要

Generalized degrees of freedom (GDF), as defined by Ye (1998 JASA 93:120-131), represent the sensitivity of model fits to perturbations of the data. Such GDF can be computed for any statistical model, making it possible, in principle, to derive the effective number of parameters in machine-learning approaches and thus compute information-theoretical measures of fit. We compare GDF with cross-validation and find that the latter provides a less computer-intensive and more robust alternative. For Bernoulli-distributed data, GDF estimates were unstable and inconsistently sensitive to the number of data points perturbed simultaneously. Cross-validation, in contrast, performs well also for binary data, and for very different machine-learning approaches.
机译:由Ye(1998 JASA 93:120-131)定义的广义自由度(GDF)表示模型拟合对数据扰动的敏感性。可以为任何统计模型计算此类GDF,原则上可以在机器学习方法中得出有效参数数量,从而计算信息理论拟合度。我们将GDF与交叉验证进行比较,发现后者提供了较少的计算机密集度和更可靠的选择。对于伯努利分布的数据,GDF估计值是不稳定的,并且对同时受到扰动的数据点的数量不一致。相反,交叉验证对于二进制数据和非常不同的机器学习方法也表现良好。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号