首页> 外文期刊>International journal for numerical methods in biomedical engineering >Neuromechanic: A computational platform for simulation and analysis of the neural control of movement
【24h】

Neuromechanic: A computational platform for simulation and analysis of the neural control of movement

机译:神经力学:用于模拟和分析运动神经控制的计算平台

获取原文
获取原文并翻译 | 示例

摘要

Neuromusculoskeletal models solve the basic problem of determining how the body moves under the influence of external and internal forces. Existing biomechanical modeling programs often emphasize dynamics with the goal of finding a feed-forward neural program to replicate experimental data or of estimating force contributions or individual muscles. The computation of rigid-body dynamics, muscle forces, and activation of the muscles are often performed separately. We have developed an intrinsically forward computational platform (Neuromechanic, www.neuromechanic.com) that explicitly represents the interdependencies among rigid body dynamics, frictional contact, muscle mechanics, and neural control modules. This formulation has significant advantages for optimization and forward simulation, particularly with application to neural controllers with feedback or regulatory features. Explicit inclusion of all state dependencies allows calculation of system derivatives with respect to kinematic states and muscle and neural control states, thus affording a wealth of analytical tools, including linearization, stability analyses and calculation of initial conditions for forward simulations. In this review, we describe our algorithm for generating state equations and explain how they may be used in integration, linearization, and stability analysis tools to provide structural insights into the neural control of movement.
机译:神经肌肉骨骼模型解决了确定人体在外力和内力影响下如何运动的基本问题。现有的生物力学建模程序经常强调动力学,其目的是找到前馈神经程序来复制实验数据或估计力的贡献或单个肌肉。刚体动力学,肌肉力量和肌肉激活的计算通常是分开进行的。我们已经开发了一个内在的向前计算平台(Neuromechanic,www.neuromechanic.com),该平台明确表示了刚体动力学,摩擦接触,肌肉力学和神经控制模块之间的相互依赖性。该公式对于优化和正向仿真具有明显的优势,特别是应用于具有反馈或调节功能的神经控制器。明确包含所有状态相关性,可以针对运动状态以及肌肉和神经控制状态计算系统导数,从而提供了丰富的分析工具,包括线性化,稳定性分析和正向仿真的初始条件的计算。在这篇综述中,我们描述了用于生成状态方程的算法,并解释了如何在集成,线性化和稳定性分析工具中使用它们来提供对运动神经控制的结构见解。

著录项

  • 来源
  • 作者单位

    School of Applied Physiology, Georgia Institute of Technology, 55514~(th) Street, Atlanta, GA 30332-0356 U.S.A.;

    Interdisciplinary Bioengineering Program, Georgia Institute of Technology, Atlanta, GA, U.S.A.,School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, U.S.A.;

    School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, U.S.A.;

    School of Applied Physiology, Georgia Institute of Technology, 55514~(th) Street, Atlanta, GA 30332-0356 U.S.A.,Interdisciplinary Bioengineering Program, Georgia Institute of Technology, Atlanta, GA, U.S.A.,School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, U.S.A.,Department of Biomedical Engineering, Emory University and Georgia Institute of Technology Atlanta, GA, U.S.A.;

    School of Applied Physiology, Georgia Institute of Technology, 55514~(th) Street, Atlanta, GA 30332-0356 U.S.A.,Interdisciplinary Bioengineering Program, Georgia Institute of Technology, Atlanta, GA, U.S.A.;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    forward simulation; linearization; stability; biomechanics; opensim; dynamics engine;

    机译:前向仿真;线性化稳定性;生物力学opensim;动力引擎;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号