首页> 外文期刊>Communications in Nonlinear Science and Numerical Simulation >PDE models for the pricing of a defaultable coupon-bearing bond under an extended JDCEV model
【24h】

PDE models for the pricing of a defaultable coupon-bearing bond under an extended JDCEV model

机译:PDE模型用于在扩展JDCEV模型下的可脱款优惠券绑定的定价

获取原文
获取原文并翻译 | 示例

摘要

We consider a two-factor model for the pricing of a non callable defaultable bond which pays coupons at certain given dates. The model under consideration is the Jump to Default Constant Elasticity of Variance (JDCEV) model. The JDCEV model is an improvement of the reduced form approach, which unifies credit and equity models into a single framework allowing for stochastic and possible negative interest rates. From the mathematical point of view, the valuation involves two partial differential equation (PDE) problems for each coupon. First, we obtain the existence of solution for these PDE problems. In order to solve them, we propose appropriate numerical schemes based on a Crank-Nicolson semiLagrangian method for time discretization combined with quadratic Lagrange finite elements for space discretization. Once the numerical solutions of the PDEs are obtained, a post-processing procedure is carried out in order to achieve the value of the bond. This post-processing includes the computation of an integral term which is approximated by using the composite trapezoidal rule. Finally, we present some numerical results for real market bonds issued by different firms in order to illustrate the proper behaviour of the numerical schemes. Moreover, we obtain an agreement between the numerical results from the PDE approach and those ones obtained by applying a Monte Carlo technique and an asymptotic aproximation method. (c) 2021 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license ( http://creativecommons.org/licenses/by-nc-nd/4.0/ )
机译:我们考虑了一个双因素模型,用于在某些给定日期支付优惠券的非可转让的脱债券的定价。正在考虑的模型是跳转到默认的差异常量弹性(JDCEV)模型。 JDCEV模型是改进了缩减的形式方法,使信用和权益模型统一到允许随机和可能的负利率的单一框架中。从数学的角度来看,估值涉及每个优惠券的两个部分微分方程(PDE)问题。首先,我们获得这些PDE问题的解决方案。为了解决它们,我们提出了基于曲柄-NicolsHemilagrangian方法的适当数值方案,用于时间离散化与二次拉格朗日有限元进行空间离散化。一旦获得了PDE的数值溶液,就执行后处理过程以实现键的值。该后处理包括计算通过使用复合梯形规则近似的整体术语。最后,我们为不同公司发出的真实市场债券提供了一些数值结果,以说明数值方案的正确行为。此外,我们在PDE方法的数值结果和通过应用蒙特卡罗技术和渐近特征方法获得的那些之间获得协议。 (c)2021作者。由elsevier b.v发布。这是CC By-NC-ND许可下的开放式访问文章(http://creativecommons.org/licenses/by-nc-nd/4.0/)

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号