首页> 外文期刊>Communications in Nonlinear Science and Numerical Simulation >Flow map parameterization methods for invariant tori in Hamiltonian systems
【24h】

Flow map parameterization methods for invariant tori in Hamiltonian systems

机译:汉密尔顿系统中不变托里的流程图参数化方法

获取原文
获取原文并翻译 | 示例

摘要

The goal of this paper is to present a methodology for the computation of invariant tori in Hamiltonian systems combining flow map methods, parameterization methods, and symplectic geometry. While flow map methods reduce the dimension of the tori to be computed by one (avoiding Poincare maps), parameterization methods reduce the cost of a single step of the derived Newton-like method to be proportional to the cost of a FFT. Symplectic properties lead to some magic cancellations that make the methods work. The multiple shooting version of the methods are applied to the computation of invariant tori and their invariant bundles around librational equilibrium points of the Restricted Three Body Problem. The invariant bundles are the first order approximations of the corresponding invariant manifolds, commonly known as the whiskers, which are very important in the dynamical organization and have important applications in space mission design. (c) 2021 Elsevier B.V. All rights reserved.
机译:本文的目标是介绍汉密尔顿系统中不变托里的计算方法,组合流程图方法,参数化方法和辛几何。 虽然流程图方法减少了由一个(避免Poincare地图)计算的TORI的尺寸,参数化方法降低了衍生的牛顿样方法的单个步骤的成本,以与FFT的成本成比例。 辛属性导致一些使方法工作的魔法取消。 该方法的多次拍摄版本应用于不变的Tori的计算及其不变捆绑在限制的三个身体问题的借调均衡点周围。 不变的捆绑包是相应不变歧管的第一阶近似,通常称为晶须,在动态组织中非常重要,并且在太空任务设计中具有重要应用。 (c)2021 elestvier b.v.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号