首页> 外文期刊>Communications in Nonlinear Science and Numerical Simulation >Analytically pricing volatility swaps and volatility options with discrete sampling: Nonlinear payoff volatility derivatives
【24h】

Analytically pricing volatility swaps and volatility options with discrete sampling: Nonlinear payoff volatility derivatives

机译:分析定价波动性互动和挥发性选项,采用离散采样:非线性收益挥发性衍生物

获取原文
获取原文并翻译 | 示例

摘要

This paper presents the first analytical pricing formulas for volatility swaps and volatility options with discrete sampling under the Black-Scholes model with time varying risk-free interest rate. Despite numerous analytical works on the pricing of variance swaps with discrete sampling under different models of asset prices, an analytical pricing formula for volatility swaps as well as volatility options had not been well addressed until now. The main challenge in pricing volatility swaps and volatility options is that payoff functions contain a square root operator, making their expectations nonlinear. By utilizing properties of noncentral chi random variables, we can compute expectations of payoff functions analytically and obtain formulas for pricing volatility swaps and volatility options, including variance swaps and variance options. Furthermore, we investigate the accuracy of the well-known convexity correction formula. Most interestingly, we extend our results to the Black-Scholes model with time varying parameters and to the Heston stochastic volatility model in which the variance process is assumed to follow the extended Cox-Ingersoll Ross process by constructing simple closed-form approximate formulas for pricing volatility swaps and demonstrate the accuracy and efficiency of this approach by comparing the approximated prices against those obtained with Monte Carlo simulations. (c) 2021 Elsevier B.V. All rights reserved.
机译:本文介绍了第一种分析定价公式,可与黑人模型下的离散取样,随着时间变化的无风险利率,采样。尽管有许多分析作品,但在不同型号的不同模型下的不同模型的差异互换的分析过程中,才能摇动的分析定价公式以及波动率选项直到现在。定价波动率递送和波动率选项中的主要挑战是收益函数包含平方根操作员,以期望非线性。通过利用非中性CHI随机变量的属性,我们可以分析计算收益函数的期望,并获得用于定价波动递交和波动率选项的公式,包括方差递送和方差选项。此外,我们研究了众所周知的凸性校正公式的准确性。最有趣的是,我们将结果扩展到Black-Scholes模型,随着时间改变的参数和髋臼随机挥发性波动模型,其中假设方差过程通过构建简单的闭合近似公式来遵循扩展的Cox-Ingersoll罗斯工艺波动性互动并通过与蒙特卡罗模拟获得的近似的价格进行比较来证明这种方法的准确性和效率。 (c)2021 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号