首页> 外文期刊>Communications in Nonlinear Science and Numerical Simulation >Kink-antikink collisions and multi-bounce resonance windows in higher-order field theories
【24h】

Kink-antikink collisions and multi-bounce resonance windows in higher-order field theories

机译:Kink-Antikink碰撞和多次反弹的谐振窗口在高阶域理论中

获取原文
获取原文并翻译 | 示例

摘要

We study collisions of coherent structures in higher-order field-theoretic models, such as the phi(8), phi(10) and phi(12) ones. The main distinguishing feature, of the example models considered herein, is that the collision arises due to the long-range interacting algebraic tails of these solitary waves. We extend the approach to suitably initialize the relevant kinks, in the additional presence of finite initial velocity, in order to minimize the dispersive wave radiation potentially created by their slow spatial decay. We find that, when suitably initialized, these models still feature the multi-bounce resonance windows earlier found in models in which the kinks bear exponential tails, such as the phi(4) and phi(6) field theories among others. Also present is the self-similar structure of the associated windows with three- and more-bounce windows at the edges of two- and lower-bounce ones. Moreover, phenomenological but highly accurate (and predictive), scaling relations are derived for the dependence of the time between consecutive collisions and, e.g., the difference in kinetic energy between the incoming one and the critical one for one-bounces. Such scalings are traced extensively over two-bounce collision windows throughout the three models, hinting at the possibility of an analytical theory in this direction. (C) 2021 Elsevier B.V. All rights reserved.
机译:我们在高阶场 - 理论模型中研究相干结构的碰撞,例如PHI(8),PHI(10)和PHI(12)。这里考虑的示例模型的主要区分特征是由于这些孤立波的远程相互作用代数尾部而产生碰撞。在有限初始速度的额外存在中,我们延伸了适当地初始化相关扭结的方法,以最小化电位由其慢空间衰减产生的分散波辐射。我们发现,在适当初始化的时候,这些模型仍然具有早期的多弹共振窗口,其中扭结的扭曲指数尾部,例如PHI(4)和PHI(6)域内理论。还存在于两个和下反弹的边缘的相关窗户的自我相似的结构。此外,针对连续冲突之间的时间的依赖性导出了现象学单独的(和预测的),缩放关系,例如,例如,对于一个反弹的传入的一个和临界能量之间的动能差异。这种缩放在整个三种模型中广泛地在两次反弹碰撞窗口上追踪,暗示在这种方向上的分析理论的可能性。 (c)2021 Elsevier B.v.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号