...
首页> 外文期刊>Rapid Communications in Mass Spectrometry: RCM >Resonance excitation and dynamic collision-induced dissociation in quadrupole ion traps using higher-order excitation frequencies
【24h】

Resonance excitation and dynamic collision-induced dissociation in quadrupole ion traps using higher-order excitation frequencies

机译:使用高阶激发频率的四极离子阱中的共振激发和动态碰撞诱导的离解

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Fragmentation of the pentapeptide leucine enkephalin (YGGFL) is accomplished via higher-order resonances combined with simultaneous analysis of low-mass product ions. Two methods of achieving excitation are explored: (1) 0.5 ms resonant excitation at the omega and at Omega-omega secular frequencies of ion motion (where Omega is the radio-frequency (rf) drive frequency) in a manner similar to both pulsed q collision-induced dissociation (PQD) and high amplitude short time excitation (HASTE), and (2) 0.5 ms pulse of the omega or at Omega-omega excitation frequencies when the secular frequency of the ions is quickly swept across resonance conditions (pulsed q dynamic CID, PqDCID). In both methods of excitation, the rf amplitude on the ring electrode is rapidly decreased after excitation, therefore enabling analysis of low-mass product ions. Maximum fragmentation efficiencies of similar to 20% can be obtained with pulsed CID with both regular and high-order frequency excitation, while pulsed DCID offers maximum efficiencies of similar to 12%. All the excitation methods studied offer increased internal energy depositions when compared to conventional CID, as measured by the a(4)/b(4) product ion ratios of leucine enkephalin. These ratios were as high as 13:1 for pulsed CID and 8:1 for PqDCID. Successful mass analysis of the low-mass ions is observed with both pulsed CID and PqDCID. The combined benefit of high internal energy deposition and wider dynamic mass range offers the possibility of increased sequence coverage and the identification of unique internal fragments or high-energy product ions which may provide complementary information to biological applications of conventional CID. This is the first report on deliberate fragmentation of precursor ions at a higher-order component of the ion secular frequency combined with a successful mass analysis of the low-mass ions through pulsed CID and PqDCID. Copyright (c) 2008 John Wiley & Sons, Ltd.
机译:五肽亮氨酸脑啡肽(YGGFL)的裂解是通过高阶共振与同时分析低质量子离子实现的。探索了两种实现激励的方法:(1)以与两个脉冲q相似的方式在ω和ω离子运动的长期频率(其中ω是射频(rf)驱动频率)处的0.5 ms共振激励。碰撞诱导解离(PQD)和高振幅短时激发(HASTE),以及(2)当离子的长期频率在整个共振条件下迅速扫过时,以0.5 ms的ω脉冲或在ω-ω激发频率下动态CID,PqDCID)。在这两种激发方法中,在激发后环形电极上的rf振幅都会迅速降低,因此可以分析低质量子离子。在常规和高阶频率激励下,脉冲CID可获得的最大碎裂效率约为20%,而脉冲DCID的最大碎裂效率约为12%。与常规CID相比,所有研究的激发方法均提供了增加的内部能量沉积,如通过亮氨酸脑啡肽的a(4)/ b(4)产物离子比率所测量的。对于脉冲CID,这些比率高达13:1,对于PqDCID,这些比率高达8:1。脉冲CID和PqDCID均可观察到成功的低质量离子质量分析。较高的内部能量沉积和更宽的动态质量范围的组合优势提供了增加序列覆盖范围以及识别独特的内部片段或高能产物离子的可能性,这可以为常规CID的生物学应用提供补充信息。这是有关在离子世俗频率的高阶部分故意分裂前体离子的第一份报告,并结合了通过脉冲CID和PqDCID对低质量离子的成功质量分析。版权所有(c)2008 John Wiley&Sons,Ltd.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号