首页> 外文期刊>Communications in Nonlinear Science and Numerical Simulation >Fractional-order harmonic resonance in a multi-frequency excited fractional Duffing oscillator with distributed time delay
【24h】

Fractional-order harmonic resonance in a multi-frequency excited fractional Duffing oscillator with distributed time delay

机译:具有分布式时间延迟的多频激发分数Duffing振荡器中的分数次谐波共振

获取原文
获取原文并翻译 | 示例

摘要

The general investigation on the vibration mechanism at arbitrary fraction-order harmonic resonance of the fractional Mathieu-Duffing system driven by multiple periodic excita-tions with distributed delay is reported theoretically and numerically. In terms of numer-ical scheme, a precise numerical algorithm based on the definition of Caputo derivative is applied. The unified analytical results of the steady-state response amplitude at each resonant frequency are obtained by utilizing the method of direct partition of motions, the self-consistent technique and the Krylov-Bogolubov-Mitropolsky asymptotic method. It relies on two kinds of parametric-forced pattern. It is found that for some parametric setting, both the amplitude of the external high-frequency excitation and the frequency of the external low-frequency excitation can give rise to saddle-node bifurcation of the steady-state amplitude in the analytical results. It is equivalent to amplitude jump phe-nomenon in the numerical observation. While comparing to the integer-order system, it is more likely to happen in the fractional-order situation. With the variant of the frac-tional order of the derivative, the steady-state amplitude solutions can be converted from monostability to bistability, then to monostability, and finally to the bistability again. This new multi-saddle-node bifurcation has not yet been reported before. The novel transcrit-ical bifurcation induced by the strength of the distributed delay is discussed and verified in detail for the first time.(c) 2021 Elsevier B.V. All rights reserved.
机译:从理论上和数值报告,通过多个周期性延迟驱动的分数Mathieu-Duffing系统的任意分数谐波谐振谐振振动机构的一般性研究。就数值方案而言,应用了基于Caputo衍生物定义的精确数值算法。通过利用运动的直接分区,自一致的技术和Krylov-Bogolubov-Mitropolsky渐近方法,获得每个谐振频率下稳态响应幅度的统一分析结果。它依赖于两种参数强制模式。据发现,对于一些参数设置,外部高频激励的幅度和外部低频激励的频率可以产生鞍结稳态振幅的分岔在分析结果。它相当于数值观察中的幅度跳跃phe-nomenon。同时与整数系统进行比较,在分数阶的情况下更有可能发生。利用衍生物的虚级顺序的变型,稳态振幅溶液可以从单稳态转换为双稳态,然后是单稳定性,最后再次到双稳态。此前尚未报告此新的多鞍座节点分叉。通过分布延迟强度诱导的新型转染术分支,并首次详细讨论和验证。(c)2021 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号