首页> 外文期刊>Communications in Nonlinear Science and Numerical Simulation >An unconditionally stable scheme for the Allen-Cahn equation with high-order polynomial free energy
【24h】

An unconditionally stable scheme for the Allen-Cahn equation with high-order polynomial free energy

机译:具有高阶多项式自由能的艾伦-CAHN方程无条件稳定的方案

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we propose an unconditionally stable numerical scheme for the Allen-Cahn (AC) equation with high-order (higher than fourth) polynomial free energy. The AC equation was proposed by Allen and Cahn to model the anti-phase domain coarsening in a binary mixture. The AC equation has been extensively used as a building block equation for modeling many scientific problems such as image processing, dendritic growth, motion by mean curvature, and multi-phase fluid flows. The AC equation can be derived from a gradient flow of a total energy functional which consists of a double-well form potential and a gradient term. Practically, a quartic polynomial has been used for the double-well potential. High-order (greater than fourth) polynomial free energy potentials can be also used in the total energy functional and can better represent interfacial dynamics of the AC equation. However, the AC equation with the high-order polynomial is getting stiffer as the polynomial order increases. Typically, this type of double-well potential is solved using a convex splitting with a stabilizing parameter and effectively modifies the original governing equation.In the proposed method, we use a second-order operator splitting method and an interpolation method. First, we solve the nonlinear double-well potential term using interpolation from the pre-computed values. Second, we solve the diffusion equation using the Crank-Nicolson method and multigrid method. The overall scheme is unconditionally stable and we theoretically prove the unconditional stability. Computational experiments are performed to demonstrate the robustness and accuracy of the proposed method; and investigate the effect of the order of the double-well potential on the dynamics of the AC equation. Finally, we highlight the different dynamics for the AC equation with polynomial free energy of various orders. The computational results suggest that the proposed method will be useful for modeling various interfacial phenomena. (C) 2020 Elsevier B.V. All rights reserved.
机译:在本文中,我们提出了具有高阶(高于第四)多项式自由能的艾伦-CAHN(AC)方程无条件稳定的数值方案。 ALEN和CAHN提出了AC方程以将抗相域粗化以二元混合物进行模拟。 AC方程已被广泛地用作构建块方程,用于建模许多科学问题,例如图像处理,树突生长,通过平均曲率和多相流体流动。 AC方程可以从总能量函数的梯度流导出,该流量包括双孔形式电位和梯度项。实际上,四个多项式已用于双井电位。高阶(大于第四)多项式自由能量也可以用于总能量功能,并且可以更好地代表交流方程的界面动态。然而,随着多项式顺序的增加,具有高阶多项式的交流式方程变得更硬。通常,使用具有稳定参数的凸分割并有效修改原始控制方程的凸分割来解决这种类型的双阱电位。在所提出的方法中,我们使用二阶操作员分离方法和插值方法。首先,我们使用从预计值的插值来解决非线性双井电位术语。其次,我们使用曲柄 - 尼古尔森方法和多重资源方法解决扩散方程。整体方案无条件稳定,我们理论上证明无条件稳定性。进行计算实验以证明所提出的方法的鲁棒性和准确性;并调查双井电位顺序对交流方程动态的影响。最后,我们突出了各种订单的多项式自由能的交流方程的不同动态。计算结果表明,该方法将用于建模各种界面现象。 (c)2020 Elsevier B.v.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号