首页> 外文期刊>Communications in Nonlinear Science and Numerical Simulation >Stable and unstable periodic orbits and their bifurcations in the nonlinear dynamical system with a fixed point vortex in a periodic flow
【24h】

Stable and unstable periodic orbits and their bifurcations in the nonlinear dynamical system with a fixed point vortex in a periodic flow

机译:在非线性动力系统中具有稳定和不稳定的周期性轨道及其分叉,周期性流动的固定点涡旋

获取原文
获取原文并翻译 | 示例

摘要

In this paper, periodic orbits in the nonlinear dynamical system with a fixed point vortex in a periodic flow are investigated. Under the influence of periodic perturbations in the phase space, an infinite number of nonlinear resonances with elliptic and hyperbolic periodic orbits arise. It is shown that these orbits exist even with completely destroyed resonant islands. In the perturbed system, all periodic orbits with periods up to T = 4T(0), where T-0 is period of perturbation, are found. The existence of nonlinear resonances of the KAM and non-KAM nature is shown, and a genetic relationship between different orbits is established. All elliptic orbits are destroyed with an increase of perturbation by the universal cascade of period doubling. It is shown that the rates of cascades for different orbits have close values and are consistent with the value of the Feigenbaum constant for two-dimensional conservative mappings. The complex interaction of hyperbolic orbits of the secondary resonances with the elliptic orbit of the primary resonance is demonstrated. It is shown that in addition to the universal cascade of period doubling, other bifurcation scenarios common to different orbits are possible. (C) 2020 Elsevier B.V. All rights reserved.
机译:本文研究了在周期性流动中具有固定点涡流的非线性动力系统中的周期性轨道。在相空间中周期性扰动的影响下,出现了具有椭圆形和双曲周期轨道的无限数量的非线性共振。结果表明,即使有完全摧毁的谐振岛也存在这些轨道。在扰动系统中,发现,每个周期性轨道最多可达T = 4T(0),其中T-0是扰动时段。显示了KAM和非KAM性质的非线性共振的存在,并建立了不同轨道之间的遗传关系。所有椭圆轨道都随着环球级联倍增的扰动而被摧毁。结果表明,不同轨道的级联速率具有近似值,并且与二维保守映射的Feigenbaum常数的值一致。对二次谐振的双曲线轨道与初级谐振的椭圆轨道的复杂相互作用。结果表明,除了倍增时期的通用级联之外,不同轨道的其他分叉场景也是可能的。 (c)2020 Elsevier B.v.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号