首页> 外文期刊>Communications in Nonlinear Science and Numerical Simulation >A numerical method for solving Caputo's and Riemann-Liouville's fractional differential equations which includes multi-order fractional derivatives and variable coefficients
【24h】

A numerical method for solving Caputo's and Riemann-Liouville's fractional differential equations which includes multi-order fractional derivatives and variable coefficients

机译:解决Caputo和Riemann-Liouville的分数微分方程的数值方法,包括多阶分数衍生物和可变系数

获取原文
获取原文并翻译 | 示例

摘要

In this paper, a numerical method is developed to obtain a solution of Caputo's and Riemann-Liouville's Fractional Differential Equations (CFDE and RLFDE). Scientific literature review shows that some numerical methods solve CFDE and there is only one paper that numerically solves RLFDE. Nevertheless, their solution is limited or the Fractional Differential Equation (FDE) to be solved is not in the most general form. To be best of the author's knowledge, the proposed method is presented as the first method that numerically solves RLFDE which includes multi-order fractional derivatives and variable coefficients. The method converts the RLFDE or CFDE to be solved into an algebraic equation. Each Riemann-Liouville's or Caputo's Fractional Derivative (RLFD and CFD), derived from the RLFDE or CFDE respectively, is conveniently written as a set of substitution functions and an integral equation. The algebraic equation, the sets of substitution functions and the integral equations are discretized; and then solved using arrays. Some examples are provided for comparing the obtained numerical results with the results of other papers (when available) and exact solutions. It is demonstrated that the method is accurate and easy to implement, being presented as a powerful tool to solve not only FDE but also a wide range of differential and integral equations. (C) 2020 Elsevier B.V. All rights reserved.
机译:在本文中,开发了一种数值方法以获得Caputo和Riemann-Liouville的分数微分方程(CFDE和RLFDE)的解决方案。科学文献综述表明,一些数值方法解决了CFDE,只有一张纸质解决了RLFDE。然而,它们的解决方案是有限的,或者要解决的分数微分方程(FDE)不是最常一般的形式。为了最好,提出的方法,所提出的方法被呈现为数字解决RLFDE的第一种方法,该方法包括多阶分数衍生物和可变系数。该方法将RLFDE或CFDE转换为代数方程。每个Riemann-Liouville或Caputo分别来自RLFDE或CFDE的分数衍生物(RLFD和CFD)是方便地被写入一组替换功能和整体方程。代数方程,替代功能组和整体方程被离散化;然后使用阵列解决。提供了一些例子,用于将所得数值结果与其他纸张(当可用)和精确的解决方案进行比较。结果表明,该方法是准确且易于实现的,作为一个强大的工具,不仅解决FDE,而且还可以解决广泛的差分和整体方程。 (c)2020 Elsevier B.v.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号