首页> 外文期刊>Communications in Nonlinear Science and Numerical Simulation >Determining response probability density of nonlinear stochastic systems by modifying analytical result of degenerated systems
【24h】

Determining response probability density of nonlinear stochastic systems by modifying analytical result of degenerated systems

机译:通过修改退化系统的解析结果确定非线性随机系统的响应概率密度

获取原文
获取原文并翻译 | 示例

摘要

In this manuscript, an approximate technique is established to determine the stationary response probability density of nonlinear stochastic systems. The stationary probability density is assumed to be an exponential function with the power constituted by two specified parts: the first part is the power of the analytical solution of the associated degenerated system (e.g., the reduced linearonlinear system, equivalent linearonlinear system) while the second is an additional polynomial function of state variables with to-be-determined coefficients. Substituting the exponential-form expression into Fokker-Planck-Kolmogorov equation yields the residual error, and the coefficients can be determined by minimizing the mean-square value of this residual error. Furthermore, the accuracy of the proposed method can be improved by an iterative procedure. Several typical examples, including van der Pol-Duffing system, Column frictional system and a nonlinear system with complex damping and stiffness, are systematically investigated to demonstrate the validity and efficiency of the proposed method. (C) 2019 Elsevier B.V. All rights reserved.
机译:在此手稿中,建立了一种近似技术来确定非线性随机系统的平稳响应概率密度。假定平稳概率密度是幂函数由两个指定部分组成的指数函数:第一部分是相关退化系统(例如,简化线性/非线性系统,等效线性/非线性系统)的解析解的幂),而第二个是具有待确定系数的状态变量的附加多项式函数。将指数形式的表达式代入Fokker-Planck-Kolmogorov方程可得出残差,可通过最小化该残差的均方值来确定系数。此外,可以通过迭代过程来提高所提出方法的准确性。系统地研究了Van der Pol-Duffing系统,圆柱摩擦系统以及具有复杂阻尼和刚度的非线性系统等几个典型实例,以证明该方法的有效性和有效性。 (C)2019 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号