首页> 外文期刊>Mechanical systems and signal processing >Identifying explicit expression of response probability density of nonlinear stochastic system: Information-theoretic method
【24h】

Identifying explicit expression of response probability density of nonlinear stochastic system: Information-theoretic method

机译:识别非线性随机系统响应概率密度的明确表达:信息 - 理论方法

获取原文
获取原文并翻译 | 示例

摘要

For a general nonlinear stochastic system, the response probability density possesses crucial significance for response evaluation and reliability design. The existing literatures derive the response probability density by accurately or approximately solving the Fokker-Planck- Kolmogorov equation, by searching for the equivalent system according to some criterion and approximating the probability density of the original system by that of the equivalent one, or by numerically solving the original equation of motion and giving discrete information statistically. Herein, a novel procedure is established to identify the explicit expression of the stationary response probability density of a general nonlinear system directly from the discrete data of samples. The stationary probability density is expressed as an exponent form with the exponential power being linear combination of base functions elaborately selected. The Shannon information entropy is then arranged as a nonlinear function of the statistical moments of base functions which are evaluated by the discrete data of samples. The undetermined coefficients of base functions are finally determined by minimizing the Shannon information entropy. Three typical examples, i.e., Duffing oscillator, van der Pol system and a frictional system (as representatives of smooth systems, electric systems and non-smooth systems, respectively), are investigated to illustrate the accuracy of this procedure, the robustness to data noise, the insensitivity to sampling interval and strength of nonlinearity, and the low requirement on the amount of data.
机译:对于一般的非线性随机系统,响应概率密度具有对响应评估和可靠性设计的关键意义。通过根据一些标准来搜索等效系统,通过对等效系统进行准确或大致求解Fokker-Planck-Kolmogorov方程,通过对原始系统的概率密度近似于当量的概率密度,或者通过相同的作品来推导响应概率密度。解决运动的原始方程,统计上离散信息。这里,建立一种新的程序,以识别一般非线性系统的静止响应概率密度的明确表达直接来自样本的离散数据。静止概率密度表示为指数形式,指数功率是精心选择的基本功能的线性组合。然后,Shannon信息熵作为由样本的离散数据评估的基本功能的统计矩的非线性函数。最终通过最小化Shannon信息熵来确定基本功能的未确定系数。三个典型的例子,即Duffing振荡器,范德波系统和摩擦系统(分别为光滑系统,电动系统和非平滑系统的代表),以说明该程序的准确性,对数据噪声的鲁棒性,对采样间隔和非线性强度的不敏感,以及对数据量的低要求。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号