首页> 外文期刊>Communications in Nonlinear Science and Numerical Simulation >Invasion traveling wave solutions of a predator-prey model with nonlocal dispersal
【24h】

Invasion traveling wave solutions of a predator-prey model with nonlocal dispersal

机译:具有非局部扩散的捕食-被捕食模型的入侵行波解

获取原文
获取原文并翻译 | 示例

摘要

This paper is concerned with the existence of traveling wave solutions for a predator-prey model with nonlocal dispersal. By applying Schauder's fixed point theorem and a cross-iteration technique, we reduce the existence of traveling wave solutions to the existence of a pair of super-sub solutions. More precisely, we proved that there exists a positive constant c* such that when c > c*, the nonlocal dispersal predator-prey system admits a traveling wave solution. In particular, the existence of traveling wave solution for c = c* is also established by asymptotic spreading theory and comparison principle. Furthermore, by investigating the non-existence of traveling wave solution, we determine the minimal speed of traveling wave solution for this model. This provides an estimation of the invasion speed. The novelty of this work lies in the construction of super-sub solutions and the proof of the complete continuity of operator. (C) 2019 Elsevier B.V. All rights reserved.
机译:本文关注具有非局部扩散的捕食者-食饵模型的行波解的存在。通过应用Schauder的不动点定理和交叉迭代技术,我们将行波解的存在减少到一对超子解的存在。更确切地说,我们证明了存在一个正常数c *,使得当c> c *时,非局部分散捕食者-食饵系统会引入行波解。特别地,还通过渐近扩展理论和比较原理建立了c = c *的行波解的存在性。此外,通过研究行波解的不存在,我们确定了该模型的行波解的最小速度。这提供了入侵速度的估计。这项工作的新颖性在于超级子解决方案的构造以及算子完全连续性的证明。 (C)2019 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号