首页> 外文期刊>Communications in Nonlinear Science and Numerical Simulation >Analysis of a reaction-diffusion cholera epidemic model in a spatially heterogeneous environment
【24h】

Analysis of a reaction-diffusion cholera epidemic model in a spatially heterogeneous environment

机译:空间异质环境中反应扩散霍乱流行模型的分析

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we derive and analyze a reaction-diffusion cholera model in bounded spatial domain with zero-flux boundary condition and general nonlinear incidence functions. The parameters in the model are space-dependent due to the spatial heterogeneity. By applying the theory of monotone dynamical systems and uniform persistence, we prove that the model admits the global threshold dynamics in terms of the basic reproduction number R-0, which is defined by the spectral radius of the next generation operator. When all model parameters are strictly positive constants, we study three types of nonlinear incidence functions to achieve the global stability results on the unique positive choleraendemic steady state (CESS) whenever it exists. For all these examples, the sharp threshold property based on the basic reproduction number was completely established by using Lyapunov functional techniques under some realistic assumptions. Our numerical results reveal that when R-0 > 1, the convergence speed of the solution to the CESS becomes faster as the diffusion coefficient d becomes larger in the spatially homogeneous case. While in the spatially heterogeneous case, cholera can not be controlled by limiting the movement of host individuals, and the spatial heterogeneity does not always enhance the disease persistence. (c) 2019 Elsevier B.V. All rights reserved.
机译:在本文中,我们导出并分析了具有零通量边界条件和一般非线性入射函数的有界空间域中的反应扩散霍乱模型。由于空间异质性,模型中的参数与空间有关。通过应用单调动力系统和一致持久性的理论,我们证明该模型根据基本再现数R-0接受了全局阈值动力学,该再现数由下一代算子的谱半径定义。当所有模型参数都是严格的正常数时,我们研究三种类型的非线性入射函数,以在唯一的正霍乱血统稳态(CESS)存在时实现全局稳定性结果。对于所有这些示例,在一些现实的假设下,通过使用Lyapunov函数技术完全建立了基于基本复制数的尖锐阈值属性。我们的数值结果表明,当R-0> 1时,在空间均匀情况下,随着扩散系数d变大,CESS解的收敛速度变快。在空间上异质的情况下,不能通过限制宿主个体的运动来控制霍乱,而且空间异质性并不总是能增强疾病的持久性。 (c)2019 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号