首页> 外文期刊>Communications in Nonlinear Science and Numerical Simulation >Fractional order modeling and control for under-actuated inverted pendulum
【24h】

Fractional order modeling and control for under-actuated inverted pendulum

机译:欠驱动倒立摆的分数阶建模和控制

获取原文
获取原文并翻译 | 示例

摘要

This paper finds a fractional order model (FOM) of an inverted pendulum system (IPS) based on simulated and experimental data. The traditional integer order model of the IPS is extended to fractional order one in this work. As a preliminary step, the estimation and optimization processes are carried out using the simulated data sets which were obtained from a reference simulated IPS prototype. The coefficients and the fractional differentiation orders of the proposed FOM have been estimated based on Sine Cosine Algorithm (SCA). The accuracy of the FOM is benchmarked against an identified integer order model (IOM). The comparison results show quite good congruence between the output of the FOM and that of the simulated IPS prototype. Practically, to demonstrate the advantages of using FOM in control system design, three fractional order PID (FOPID) controllers are designed according to the identified FOM, the identified IOM and the theoretical nonlinear model (TNM) using the same design scheme for a fair comparison. Furthermore, the FOM-based FOPID (FOPIDFOM) controller is compared to fractional order fuzzy PD controller with grey predictor (FOFPD-GP). Practical results show significantly improved performance using the FOPID FOM controller; as a strong evidence of the FOM reliability in control system design. (C) 2019 Elsevier B.V. All rights reserved.
机译:本文基于仿真和实验数据,找到了倒立摆系统(IPS)的分数阶模型(FOM)。这项工作将IPS的传统整数阶模型扩展到分数阶一。作为第一步,使用从参考模拟IPS原型获得的模拟数据集执行估算和优化过程。基于正弦余弦算法(SCA)估计了提出的FOM的系数和分数微分阶数。 FOM的准确性是根据已识别的整数阶模型(IOM)进行基准测试的。比较结果表明,FOM的输出与模拟的IPS原型的输出相当一致。实际上,为了展示在控制系统设计中使用FOM的优势,根据识别出的FOM,识别出的IOM和理论非线性模型(TNM),使用相同的设计方案设计了三个分数阶PID(FOPID)控制器,以进行公平的比较。 。此外,将基于FOM的FOPID(FOPIDFOM)控制器与带有灰色预测器的分数阶模糊PD控制器(FOFPD-GP)进行了比较。实际结果表明,使用FOPID FOM控制器可以显着提高性能;作为控制系统设计中FOM可靠性的有力证据。 (C)2019 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号