首页> 外文期刊>Communications in Nonlinear Science and Numerical Simulation >Direct nonlinear Fourier transform algorithms for the computation of solitonic spectra in focusing nonlinear Schrodinger equation
【24h】

Direct nonlinear Fourier transform algorithms for the computation of solitonic spectra in focusing nonlinear Schrodinger equation

机译:直接非线性傅里叶变换算法在聚焦非线性薛定Sch方程中的孤子谱计算

获取原文
获取原文并翻译 | 示例

摘要

Starting from a comparison of some established numerical algorithms for the computation of the eigenvalues (discrete or solitonic spectrum) of the non-Hermitian version of the Zakharov-Shabat spectral problem, this article delivers new algorithms that combine the best features of the existing ones and thereby allays their relative weaknesses. Our algorithm is modelled within the remit of the so-called direct nonlinear Fourier transform (NFT) associated with the focusing nonlinear Schrodinger equation. First, we present the data for the calibration of existing methods comparing the relative errors associated with the computation of the continuous NF spectrum. Then each method is paired with different numerical algorithms for finding zeros of a complex-valued function to obtain the eigenvalues. Next we describe a new class of methods based on the contour integrals evaluation for the efficient search of eigenvalues. After that we introduce a new hybrid method, one of our main results: the method combines the advances of contour integral approach and makes use of the iterative algorithms at its second stage for the refined eigenvalues search. The veracity of our new hybrid algorithm is established by estimating the convergence speed and accuracy across three independent test profiles. Along with the development of a new approach for the computation of the eigenvalues, our study also addresses the problem of computation of the so-called norming constants associated with the eigenvalues. We show that our formalism effectively amounts to accurate and fast enough computation of residues of the reflection coefficient in the upper complex half-plane of the spectral parameter. (C) 2018 Elsevier B.V. All rights reserved.
机译:从比较一些公认的数值算法来计算Zakharov-Shabat频谱问题的非Hermitian版本的特征值(离散或孤子谱)开始,本文提供了结合现有算法的最佳特征的新算法,以及从而减轻他们的相对弱点。我们的算法是在与聚焦非线性Schrodinger方程相关的所谓直接非线性傅里叶变换(NFT)的范围内建模的。首先,我们提供用于校准现有方法的数据,比较与连续NF谱的计算相关的相对误差。然后将每种方法与不同的数值算法配对,以找到复数值函数的零,以获得特征值。接下来,我们描述基于轮廓积分评估的一类新方法,用于有效搜索特征值。之后,我们引入了一种新的混合方法,这是我们的主要结果之一:该方法结合了轮廓积分方法的先进技术,并在第二阶段利用迭代算法进行了精炼的特征值搜索。我们的新混合算法的准确性是通过估算三个独立测试配置文件的收敛速度和准确性来确定的。随着新的特征值计算方法的发展,我们的研究还解决了与特征值相关的所谓规范常数的计算问题。我们表明,我们的形式主义有效地构成了对光谱参数的上复半平面中的反射系数残差的准确和足够快的计算。 (C)2018 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号