首页> 外文期刊>Communications in Nonlinear Science and Numerical Simulation >The dynamics of ensemble of neuron-like elements with excitatory couplings
【24h】

The dynamics of ensemble of neuron-like elements with excitatory couplings

机译:兴奋性耦合的神经元样元素的集成动力学

获取原文
获取原文并翻译 | 示例

摘要

We investigated the phenomenological model of ensemble of two FitzHugh-Nagumo neuron-like elements with symmetric excitatory couplings. The main advantage of proposed model is the new approach to model the coupling which is implemented by smooth function that approximates rectangular function and reflects main important properties of biological synaptic coupling. The proposed coupling depends on three parameters that define: a) the beginning of activation of an element a, b) the duration of the activation 5 and c) the strength of the coupling g. We observed a rich diversity of different types of neuron-like activity, including regular in-phase, anti-phase and sequential spiking. In the phase space of the system, these regular regimes correspond to specific asymptotically stable periodic motions (limit cycles). We also observed the canard in-phase solutions and the chaotic anti-phase activity, which corresponds to a strange attractor that appears via the cascade of period doubling bifurcations of limit cycles.In addition, we investigated an interesting phenomenon when two different chaotic attractive regimes corresponding for two different types of chaotic anti-phase activity merge in a single strange attractor. As a result, a new type of chaotic anti-phase regime appears by explosion from the collision of these two strange attractors.We also provided the detailed study of bifurcations which lead to the transitions between all these regimes. We detected on the (alpha, delta) parameter plane regions that correspond to the above-mentioned regimes. We also showed numerically the existence of bistability regions where various non-trivial regimes coexist. For example, in some regions, one can observe either anti-phase or in-phase oscillations depending on initial conditions. We also specified regions corresponding to coexisting various types of sequential activity. (C) 2018 Elsevier B.V. All rights reserved.
机译:我们研究了具有对称的兴奋性耦合的两个FitzHugh-Nagumo神经元样元素的集合的现象学模型。提出的模型的主要优点是对耦合进行建模的新方法,该方法是通过平滑函数实现的,该函数逼近矩形函数并反映了生物突触耦合的主要重要特性。提出的耦合取决于定义以下三个参数:a)元素激活的开始a,b)激活的持续时间5和c)耦合的强度g。我们观察到了不同类型的神经元样活动的丰富多样性,包括规则的同相,反相和顺序峰值。在系统的相空间中,这些规则状态对应于特定的渐近稳定的周期性运动(极限环)。我们还观察到canard同相溶液和混沌反相活性,这对应于通过极限周期的周期倍增分叉的级联出现的奇怪吸引子。此外,我们还研究了两种不同混沌吸引机制下的有趣现象。对应于两种不同类型的混沌反相活动的一个单独的吸引子合并。结果,由于这两个奇怪的吸引子的碰撞而爆炸产生了一种新型的混沌反相状态。我们还提供了分叉的详细研究,该分叉导致了所有这两种状态之间的过渡。我们在(alpha,delta)参数平面上检测到与上述机制相对应的区域。我们还从数字上显示了各种非平凡政权共存的双稳态区域的存在。例如,在某些地区,根据初始条件,可以观察到反相或同相振荡。我们还指定了与各种类型的顺序活动共存相对应的区域。 (C)2018 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号