首页> 外文期刊>Communications in Nonlinear Science and Numerical Simulation >The homotopy analysis method for multiple solutions of nonlinear boundary value problems
【24h】

The homotopy analysis method for multiple solutions of nonlinear boundary value problems

机译:非线性边值问题多重解的同伦分析方法

获取原文
获取原文并翻译 | 示例

摘要

This paper investigates two basic steps of the homotopy analysis method (HAM) when applied to nonlinear boundary value problems of the chemical reaction kinetics, namely (1) the prediction and (2) the effective calculation of multiple solutions. To be specific, the approach is applied to the dual solutions of an exactly solvable reaction-diffusion model for porous catalysts with apparent reaction order n = -1. It is shown that (ⅰ) the auxiliary parameter h which controls the convergence of the HAM solutions in general plays a basic role also in the prediction of dual solutions, and (ⅱ) the dual solutions can be calculated by starting the HAM-algorithm with one and the same initial guess. It is conjectured that the features (1)and (2) hold generally in use of HAM to identify and to determine the multiple solutions of nonlinear boundary value problems.
机译:本文研究了同构分析方法(HAM)在化学反应动力学的非线性边值问题中的两个基本步骤,即(1)预测和(2)多种解的有效计算。具体而言,该方法适用于表观反应阶数为n = -1的多孔催化剂的可精确求解的反应扩散模型的双重解。结果表明,(ⅰ)控制HAM解的收敛性的辅助参数h通常在对偶解的预测中也起着基本作用,并且(ⅱ)可以通过启动HAM-算法来计算对偶解。一个相同的初始猜测。可以推测,特征(1)和(2)通常在使用HAM时可以识别和确定非线性边值问题的多重解。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号