首页> 外文期刊>Communications in Nonlinear Science and Numerical Simulation >Solving nonlinear mixed Volterra-Fredholm integral equations with two dimensional block-pulse functions using direct method
【24h】

Solving nonlinear mixed Volterra-Fredholm integral equations with two dimensional block-pulse functions using direct method

机译:用直接方法求解带有二维块脉冲函数的非线性混合Volterra-Fredholm积分方程

获取原文
获取原文并翻译 | 示例

摘要

Few numerical methods such as projection methods, time collocation method, trapezoidal Nystrom method, Adomian decomposition method and some else are used for mixed Volterra-Fredholm integral equations. The main purpose of this paper is to use the piece-wise constant two-dimensional block-pulse functions (2D-BPFs) and their operational matrices for solving mixed nonlinear Volterra-Fredholm integral equations of the first kind (VFIE). This method leads to a linear system of equations by expanding unknown function as 2D-BPFs with unknown coefficients. The properties of 2D-BPFs are then utilized to evaluate the unknown coefficients. The error analysis and rate of convergence are given. Finally, some numerical examples show the implementation and accuracy of this method.
机译:Volterra-Fredholm混合方程只使用很少的数值方法,例如投影方法,时间配置方法,梯形尼斯特罗姆方法,Adomian分解方法和其他一些方法。本文的主要目的是使用分段常数二维块脉冲函数(2D-BPF)及其运算矩阵来求解第一类混合非线性Volterra-Fredholm积分方程(VFIE)。该方法通过将未知函数扩展为具有未知系数的2D-BPF来形成方程的线性系统。然后,利用2D-BPF的属性来评估未知系数。给出了误差分析和收敛速度。最后,通过数值算例说明了该方法的实现和准确性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号