首页> 外文期刊>Communications in Nonlinear Science and Numerical Simulation >A recursive delayed output-feedback control to stabilize chaotic systems using linear-in-parameter neural networks
【24h】

A recursive delayed output-feedback control to stabilize chaotic systems using linear-in-parameter neural networks

机译:使用线性参数神经网络来稳定混沌系统的递归延迟输出反馈控制

获取原文
获取原文并翻译 | 示例

摘要

In this paper, a recursive delayed output-feedback control strategy is considered for stabilizing unstable periodic orbit of unknown nonlinear chaotic systems. An unknown nonlinearity is directly estimated by a linear-in-parameter neural network which is then used in an observer structure. An on-line modified back propagation algorithm with e-modification is used to update the weights of the network. The globally uniformly ultimately boundedness of overall closed-loop system response is analytically ensured using Razumikhin lemma. To verify the effectiveness of the proposed observer-based controller, a set of simulations is performed on a Rossler system in comparison with several previous methods.
机译:为了稳定未知非线性混沌系统的不稳定周期轨道,本文考虑了一种递归的延迟输出反馈控制策略。未知的非线性由参数线性神经网络直接估算,然后将其用于观察者结构中。使用带有电子修改的在线修改的反向传播算法来更新网络的权重。使用Razumikhin引理可解析地确保整个闭环系统响应的全局统一最终有界性。为了验证所提出的基于观测器的控制器的有效性,与几种先前的方法相比,在Rossler系统上执行了一组仿真。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号