首页> 外文期刊>Communications in Nonlinear Science and Numerical Simulation >Analytic solution of a class of fractional differential equations with variable coefficients by operatorial methods
【24h】

Analytic solution of a class of fractional differential equations with variable coefficients by operatorial methods

机译:一类变系数分数微分方程的算子解析解。

获取原文
获取原文并翻译 | 示例

摘要

In this note we show the analytic solution of a class of fractional differential equations with variable coefficients by using operatorial methods. Taking inspiration from previous papers by Dattoli et al. [4-6] about spectral properties of Laguerre derivative, we here generalize some of their results to fractional evolution equations. Besides that, we have two interesting generalized examples. One is about telegraph equation with time dependent coefficient. The other, that could be of some interest for realistic applications, is the fractional diffusion with a space-dependent diffusion coefficient.
机译:在本说明中,我们使用算子方法显示了一类具有可变系数的分数阶微分方程的解析解。从Dattoli等人先前的论文中汲取灵感。 [4-6]关于Laguerre导数的光谱特性,我们在这里将它们的一些结果推广到分数演化方程。除此之外,我们还有两个有趣的通用示例。一种是关于具有随时间变化的系数的电报方程。对于实际应用,可能感兴趣的另一个是具有随空间变化的扩散系数的分数扩散。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号