首页> 外文期刊>Communications in Nonlinear Science and Numerical Simulation >Combined effects of correlated bounded noises and weak periodic signal input in the modified FitzHugh-Nagumo neural model
【24h】

Combined effects of correlated bounded noises and weak periodic signal input in the modified FitzHugh-Nagumo neural model

机译:修正的FitzHugh-Nagumo神经模型中相关有界噪声和弱周期信号输入的组合效应

获取原文
获取原文并翻译 | 示例

摘要

We study the dynamics of neurons via a bistable modified stochastic FitzHugh-Nagumo model having two stable fixed points separated by one unstable fixed point. Due to the ability of a neuron to detect and enhance weak information transmission, we show numerically that starting from the resting potential, we get firing activities (spiking) when operating slightly beyond the supercritical Hopf bifurcation. For real biological systems which are sometimes embedded in the complex environment, we observe that a gradual increase or decrease noise intensities did not result in a gradual change of the membrane potential distribution thanks to noise induced transition phenomena. We shown analytically that for zero correlation between two sine Wiener noises, additive noise has no effect on the transition between monostable and bistable phase on the neural model. We adapted a general expression of the signal-to-noise ratio for a general two-state theory extended in the asymmetric case and non-Gaussian noises in our model to study the influence of noise strength in stochastic resonance. Our investigation revealed that in the evolution of excitable system, neurons may use noises to their advantage by enhancing their sensitivity near a preferred phase to detect external stimuli or affect the efficiency and rate of information processing.
机译:我们通过双稳态修改的随机FitzHugh-Nagumo模型研究神经元的动力学,该模型具有两个稳定的固定点与一个不稳定的固定点隔开。由于神经元具有检测和增强弱信息传递的能力,因此我们从数字上表明,从静息电位开始,当操作超出超临界Hopf分叉时,我们会产生发射活动(加标)。对于有时嵌入复杂环境中的真实生物系统,我们观察到,由于噪声引起的过渡现象,噪声强度的逐渐增加或减小不会导致膜电位分布的逐渐变化。我们通过分析表明,对于两个正弦维纳噪声之间的零相关性,加性噪声对神经模型中单稳态和双稳态相位之间的过渡没有影响。我们针对在不对称情况下扩展的一般两态理论和模型中的非高斯噪声,采用了信噪比的一般表达式,以研究噪声强度对随机共振的影响。我们的研究表明,在兴奋性系统的进化过程中,神经元可能会通过在优选阶段附近增强其灵敏度来检测外部刺激或影响信息处理的效率和速率,从而利用噪声来发挥其优势。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号