首页> 外文期刊>Communications in Nonlinear Science and Numerical Simulation >A sum operator method for the existence and uniqueness of positive solutions to Riemann-Liouville fractional differential equation boundary value problems
【24h】

A sum operator method for the existence and uniqueness of positive solutions to Riemann-Liouville fractional differential equation boundary value problems

机译:Riemann-Liouville分数阶微分方程边值问题正解的存在和唯一性的和算子方法

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we are concerned with the existence and uniqueness of positive solutions for the following fractional boundary value problems given by -D_(0+)~αu(t)=f(t.u(t))+g(t,u(t)).0 < t < 1. 3<α≤4. where D_0~α is the standard Riemann-Liouville fractional derivative, subject either to the boundary conditions u(0) = u'(0) = u"(0) - u"(1) = 0 or u(0) = u'(0) = u"(0) = 0. u"(1) = βu"(η) for η, βη~(α-3) ∈ (0.1). Our analysis relies on a fixed point theorem of a sum operator. Our results can not only guarantee the existence of a unique positive solution, but also be applied to construct an iterative scheme for approximating it. Two examples are given to illustrate the main results.
机译:在本文中,我们关注以下由-D_(0+)〜αu(t)= f(tu(t))+ g(t,u( t))。0

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号