首页> 外文期刊>Communications in Nonlinear Science and Numerical Simulation >Stabilization via parametric excitation of multi-dof statically unstable systems
【24h】

Stabilization via parametric excitation of multi-dof statically unstable systems

机译:通过参数激励激发多自由度静态不稳定系统

获取原文
获取原文并翻译 | 示例

摘要

The problem of re-stabilization via parametric excitation of statically unstable linear Hamiltonian systems is addressed. An n-degree-of-freedom dynamical system is considered, at rest in a critical equilibrium position, possessing a pair of zero-eigenvalues and n - 1 pairs of distinct purely imaginary conjugate eigenvalues. The response of the system to a small static load, making the zero eigenvalues real and opposite, simultaneous to a harmonic parametric excitation of small amplitude, is studied by the Multiple Scale perturbation method, and the stability of the equilibrium position is investigated. Several cases of resonance between the excitation frequency and the natural non-zero frequencies are studied, calling for standard and non-standard applications of the method. It is found that the parametric excitation is able to re-stabilize the equilibrium for any value of the excitation frequencies, except for frequencies close to resonant values, provided a sufficiently large excitation amplitude is enforced. Results are compared with those provided by a purely numerical approach grounded on the Roquet theory.
机译:解决了通过参数不稳定的线性不稳定哈密顿系统的励磁重新稳定的问题。考虑一个n自由度动力学系统,该系统在关键的平衡位置处于静止状态,它具有一对零特征值和n-1对不同的纯虚构共轭特征值。用多重尺度摄动法研究了系统对小的静态载荷的响应,使零特征值变为实数和相反,同时又对小振幅的谐波参量进行了激励,并研究了平衡位置的稳定性。研究了激励频率和自然非零频率之间共振的几种情况,要求该方法的标准和非标准应用。已经发现,只要强制施加足够大的激励幅度,除了接近谐振值的频率之外,对于任何激励频率值,参量激励都能够重新稳定平衡。将结果与基于Roquet理论的纯数值方法提供的结果进行比较。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号