首页> 外文期刊>Communications in Nonlinear Science and Numerical Simulation >Breathers and 'black' rogue waves of coupled nonlinear Schrodinger equations with dispersion and nonlinearity of opposite signs
【24h】

Breathers and 'black' rogue waves of coupled nonlinear Schrodinger equations with dispersion and nonlinearity of opposite signs

机译:具有正负色散和非线性的耦合非线性Schrodinger方程的呼吸和'黑'流氓波

获取原文
获取原文并翻译 | 示例

摘要

Breathers and rogue waves of special coupled nonlinear Schrodinger systems (the Manakov equations) are studied analytically. These systems model the orthogonal polarization modes in an optical fiber with randomly varying birefringence. Studies earlier in the literature had shown that rogue waves can occur in these Manakov systems with dispersion and nonlinearity of opposite signs, and that the criterion for the existence of rogue waves correlates closely with the onset of modulation instability. In the present work the Hirota bilinear transform is employed to calculate the breathers (pulsating modes), and rogue waves are obtained as a long wave limit of such breathers. In terms of wave profiles, a 'black' rogue wave (intensity dropping to zero) and the transition to a four-petal configuration are elucidated analytically. Sufficiently strong modulation instabilities of the background may overwhelm or mask the development of the rogue waves, and such thresholds are correlated to actual physical properties of optical fibers. Numerical simulations on the evolution of breathers are performed to verify the prediction of the analytical formulations. (C) 2015 Elsevier B.V. All rights reserved.
机译:分析研究了特殊耦合非线性Schrodinger系统(Manakov方程)的呼吸和流浪。这些系统以随机变化的双折射对光纤中的正交偏振模进行建模。文献中较早的研究表明,在这些Manakov系统中可能会出现流浪,并且其色散和符号相反为非线性,并且流浪存在的标准与调制不稳定的发生密切相关。在本工作中,采用Hirota双线性变换来计算通气量(脉动模式),并获得无赖波作为此类通气的长波极限。在波剖面方面,通过解析阐明了“黑”流氓波(强度下降到零)和过渡到四瓣状结构。背景的足够强的调制不稳定性可能会淹没或掩盖流氓波的发展,并且这种阈值与光纤的实际物理特性相关。进行了有关呼吸变化的数值模拟,以验证分析公式的预测。 (C)2015 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号