首页> 外文期刊>Communications in Nonlinear Science and Numerical Simulation >Stochastic algorithms for solving structured low-rank matrix approximation problems
【24h】

Stochastic algorithms for solving structured low-rank matrix approximation problems

机译:解决结构化低秩矩阵逼近问题的随机算法

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we investigate the complexity of the numerical construction of the Hankel structured low-rank approximation (HSLRA) problem, and develop a family of algorithms to solve this problem. Briefly, HSLRA is the problem of finding the closest (in some pre-defined norm) rank r approximation of a given Hankel matrix, which is also of Hankel structure. We demonstrate that finding optimal solutions of this problem is very hard. For example, we argue that if HSLRA is considered as a problem of estimating parameters of damped sinusoids, then the associated optimization problem is basically unsolvable. We discuss what is known as the orthogonality condition, which solutions to the HSLRA problem should satisfy, and describe how any approximation may be corrected to achieve this orthogonality. Unlike many other methods described in the literature the family of algorithms we propose has the property of guaranteed convergence. (C) 2014 Elsevier B.V. All rights reserved.
机译:在本文中,我们研究了汉克尔结构低秩近似(HSLRA)问题的数值构造的复杂性,并开发了一系列算法来解决该问题。简而言之,HSLRA是寻找给定汉克矩阵的最接近(在某些预定义范数中)秩r近似的问题。我们证明,找到这个问题的最佳解决方案非常困难。例如,我们认为,如果将HSLRA视为估计阻尼正弦曲线参数的问题,则相关的优化问题基本上是无法解决的。我们讨论了所谓的正交性条件,HSLRA问题应满足哪些解决方案,并描述如何校正任何近似值以实现此正交性。与文献中描述的许多其他方法不同,我们提出的算法家族具有保证收敛的特性。 (C)2014 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号