首页> 外文期刊>Communications in Nonlinear Science and Numerical Simulation >A Caputo fractional derivative of a function with respect to another function
【24h】

A Caputo fractional derivative of a function with respect to another function

机译:一个函数相对于另一个函数的Caputo分数导数

获取原文
获取原文并翻译 | 示例

摘要

In this paper we consider a Caputo type fractional derivative with respect to another function. Some properties, like the semigroup law, a relationship between the fractional derivative and the fractional integral, Taylor's Theorem, Fermat's Theorem, etc., are studied. Also, a numerical method to deal with such operators, consisting in approximating the fractional derivative by a sum that depends on the first-order derivative, is presented. Relying on examples, we show the efficiency and applicability of the method. Finally, an application of the fractional derivative, by considering a Population Growth Model, and showing that we can model more accurately the process using different kernels for the fractional operator is provided. (C) 2016 Elsevier B.V. All rights reserved.
机译:在本文中,我们考虑了有关另一个函数的Caputo型分数导数。研究了半群定律,分数阶导数与分数积分之间的关​​系,泰勒定理,费马定理等一些性质。另外,提出了一种处理这种算子的数值方法,该方法包括用取决于一阶导数的和来近似分数导数。依靠实例,说明了该方法的有效性和适用性。最后,通过考虑人口增长模型,并提供了分数微分的应用,该结果表明我们可以为分数算子使用不同内核更精确地建模过程。 (C)2016 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号