首页> 外文期刊>Communications in Nonlinear Science and Numerical Simulation >Measurement-based perturbation theory and differential equation parameter estimation with applications to satellite gravimetry
【24h】

Measurement-based perturbation theory and differential equation parameter estimation with applications to satellite gravimetry

机译:基于测量的微扰理论和微分方程参数估计及其在卫星重力分析中的应用

获取原文
获取原文并翻译 | 示例

摘要

The numerical integration method has been routinely used by major institutions worldwide, for example, NASA Goddard Space Flight Center and German Research Center for Geosciences (GFZ), to produce global gravitational models from satellite tracking measurements of CHAMP and/or GRACE types. Such Earth's gravitational products have found widest possible multidisciplinary applications in Earth Sciences. The method is essentially implemented by solving the differential equations of the partial derivatives of the orbit of a satellite with respect to the unknown harmonic coefficients under the conditions of zero initial values. From the mathematical and statistical point of view, satellite gravimetry from satellite tracking is essentially the problem of estimating unknown parameters in the Newton's nonlinear differential equations from satellite tracking measurements. We prove that zero initial values for the partial derivatives are incorrect mathematically and not permitted physically. The numerical integration method, as currently implemented and used in mathematics and statistics, chemistry and physics, and satellite gravimetry, is groundless, mathematically and physically. Given the Newton's nonlinear governing differential equations of satellite motion with unknown equation parameters and unknown initial conditions, we develop three methods to derive new local solutions around a nominal reference orbit, which are linked to measurements to estimate the unknown corrections to approximate values of the unknown parameters and the unknown initial conditions. Bearing in mind that satellite orbits can now be tracked almost continuously at unprecedented accuracy, we propose the measurement-based perturbation theory and derive global uniformly convergent solutions to the Newton's nonlinear governing differential equations of satellite motion for the next generation of global gravitational models. Since the solutions are global uniformly convergent, theoretically speaking, they are able to extract smallest possible gravitational signals from modern and future satellite tracking measurements, leading to the production of global high-precision, high-resolution gravitational models. By directly turning the nonlinear differential equations of satellite motion into the nonlinear integral equations, and recognizing the fact that satellite orbits are measured with random errors, we further reformulate the links between satellite tracking measurements and the global uniformly convergent solutions to the Newton's governing differential equations as a condition adjustment model with unknown parameters, or equivalently, the weighted least squares estimation of unknown differential equation parameters with equality constraints, for the reconstruction of global high-precision, high-resolution gravitational models from modern ( and future) satellite tracking measurements. (C) 2017 The Author(s). Published by Elsevier B.V.
机译:全球主要机构(例如,NASA戈达德太空飞行中心和德国地球科学研究中心(GFZ))已常规使用数值积分方法,以通过CHAMP和/或GRACE类型的卫星跟踪测量产生全球引力模型。这样的地球引力产品在地球科学中发现了最广泛的多学科应用。该方法本质上是通过在零初始值的条件下针对未知谐波系数求解卫星轨道偏导数的微分方程来实现的。从数学和统计的角度来看,卫星跟踪的卫星重力法本质上是从卫星跟踪测量估算牛顿非线性微分方程中未知参数的问题。我们证明偏导数的零初始值在数学上是错误的,在物理上是不允许的。目前在数学和统计学,化学和物理以及卫星重力分析中实施和使用的数值积分方法在数学和物理上都是毫无根据的。给定卫星运动的非线性控制微分方程的牛顿方程方程参数和初始条件未知,我们开发了三种方法来推导名义参考轨道周围的新局部解,这些方法与测量值链接在一起以估计未知修正值以近似未知值参数和未知的初始条件。考虑到现在可以几乎以前所未有的精度连续跟踪卫星轨道,我们提出了基于测量的扰动理论,并为下一代全球重力模型推导了牛顿非线性控制卫星运动微分方程的全局一致收敛解。从理论上讲,由于这些解决方案在全球范围内是统一收敛的,因此它们能够从现代和未来的卫星跟踪测量中提取最小的重力信号,从而产生了全球高精度,高分辨率的重力模型。通过将卫星运动的非线性微分方程直接转换为非线性积分方程,并认识到卫星轨道是随机误差进行测量的,我们进一步重新构造了卫星跟踪测量与牛顿控制微分方程的全局一致收敛解之间的联系。作为具有未知参数的条件调整模型,或者等效地,具有等式约束的未知微分方程参数的加权最小二乘估计,用于从现代(和未来)卫星跟踪测量中重建全球高精度,高分辨率引力模型。 (C)2017作者。由Elsevier B.V.发布

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号