首页> 外文期刊>Communications in Nonlinear Science and Numerical Simulation >A new numerical treatment based on Lucas polynomials for 1D and 2D sinh-Gordon equation
【24h】

A new numerical treatment based on Lucas polynomials for 1D and 2D sinh-Gordon equation

机译:基于Lucas多项式的一维和二维sinh-Gordon方程的新数值处理

获取原文
获取原文并翻译 | 示例

摘要

In this paper, a new mixed method based on Lucas and Fibonacci polynomials is developed for numerical solutions of 1D and 2D sinh-Gordon equations. Firstly time variable discretized by central finite difference and then unknown function and its derivatives are expanded to Lucas series. With the help of these series expansion and Fibonacci polynomials, matrices for differentiation are derived. With this approach, finding the solution of sinh-Gordon equation transformed to finding the solution of an algebraic system of equations. Lucas series coefficients are acquired by solving this system of algebraic equations. Then by plugginging these coefficients into Lucas series expansion numerical solutions can be obtained consecutively. The main objective of this paper is to demonstrate that Lucas polynomial based method is convenient for 1D and 2D nonlinear problems. By calculating L-2 and L-infinity error norms of some 1D and 2D test problems efficiency and performance of the proposed method is monitored. Acquired accurate results confirm the applicability of the method. (C) 2017 Elsevier B.V. All rights reserved.
机译:本文针对一维和二维sinh-Gordon方程的数值解,开发了一种基于Lucas和Fibonacci多项式的混合方法。首先将时间变量通过中心有限差分离散化,然后将未知函数及其导数扩展为Lucas级数。在这些级数展开和斐波那契多项式的帮助下,得出了用于区分的矩阵。使用这种方法,将sinh-Gordon方程的解转化为寻找方程的代数系统的解。卢卡斯级数系数是通过求解该代数方程组而获得的。然后,通过将这些系数插入Lucas级数展开,可以连续获得数值解。本文的主要目的是证明基于卢卡斯多项式的方法可轻松解决一维和二维非线性问题。通过计算一些一维和二维测试问题的L-2和L-无穷大误差范数,可以监视所提出方法的效率和性能。获得的准确结果证实了该方法的适用性。 (C)2017 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号