首页> 外文期刊>IEEE Transactions on Communications >Capacity-Approaching TQC-LDPC Convolutional Codes Enabling Power-Efficient Decoders
【24h】

Capacity-Approaching TQC-LDPC Convolutional Codes Enabling Power-Efficient Decoders

机译:支持容量的TQC-LDPC卷积码可实现节能解码器

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we develop a new capacity-approaching code, namely, parallel-concatenated (PC)-Low Density Parity Check (LDPC) convolutional code that is based on the parallel concatenation of trellis-based quasi-cyclic LDPC (TQC-LDPC) convolutional codes. The proposed PC-LDPC convolutional code can be derived from any QC-LDPC block code by introducing the trellis-based convolutional dependency to the code. The capacity-approaching PC-LDPC convolutional codes are encoded through parallel concatenated trellis-based QC recursive systematic convolutional (RSC) encoder (namely, QC-RSC encoder) that is also proposed in this paper. The proposed PC-LDPC convolutional code and the associated encoder retain a fine input granularity on the order of the lifting factor of the underlying block code. We also describe the corresponding trellis-based QC maximum a posteriori probability (namely, QC-MAP) decoder that efficiently decodes the PC-LDPC convolutional code. Performance and hardware implementation results show that the PC-LDPC convolutional codes with the QC-MAP decoder have two times lower complexity for a given bit-error-rate (BER), signal-to-noise ratio, and data rate, than conventional QC-LDPC block codes and LDPC convolutional codes. Moreover, the PC-LDPC convolutional code with the QC-MAP decoder outperforms the conventional QC-LDPC block codes by more than 0.5 dB for a given BER, complexity, and data rate and approaches Shannon capacity limit with a gap smaller than 1.25 dB. This low decoding complexity and the fine granularity make it feasible to efficiently implement the proposed capacity-approaching PC-LDPC convolutional code and the associated trellis-based QC-MAP decoder in next generation ultra-high data rate mobile systems.
机译:本文中,我们开发了一种新的容量接近代码,即基于网格的准循环LDPC(TQC-LDPC)的并行级联的并行级联(PC)-低密度奇偶校验(LDPC)卷积代码)卷积代码。通过将基于网格的卷积相关性引入该代码,可以从任何QC-LDPC块代码中派生所提出的PC-LDPC卷积代码。本文还提出了通过并行级联的基于网格的QC递归系统卷积(RSC)编码器(即QC-RSC编码器)对接近容量的PC-LDPC卷积码进行编码。所提出的PC-LDPC卷积码和相关的编码器在基础块码的提升因子的数量级上保持了良好的输入粒度。我们还描述了有效地解码PC-LDPC卷积码的相应的基于网格的QC最大后验概率(即QC-MAP)解码器。性能和硬件实现结果表明,对于给定的误码率(BER),信噪比和数据速率,具有QC-MAP解码器的PC-LDPC卷积码的复杂度是传统QC的两倍。 -LDPC分组码和LDPC卷积码。此外,对于给定的BER,复杂性和数据速率,带有QC-MAP解码器的PC-LDPC卷积码的性能比传统的QC-LDPC块码高出0.5 dB以上,并以小于1.25 dB的间隙接近Shannon容量极限。这种低解码复杂度和精细粒度使得在下一代超高数据速率移动系统中有效地实现建议的逼近容量的PC-LDPC卷积码和相关的基于网格的QC-MAP解码器成为可能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号