首页> 外文期刊>Combustion and Flame >Combustion chemistry and flame structure of furan group biofuels using molecular-beam mass spectrometry and gas chromatography - Part Ⅰ: Furan
【24h】

Combustion chemistry and flame structure of furan group biofuels using molecular-beam mass spectrometry and gas chromatography - Part Ⅰ: Furan

机译:分子束质谱和气相色谱法测定呋喃类生物燃料的燃烧化学和火焰结构-第一部分:呋喃

获取原文
获取原文并翻译 | 示例
       

摘要

Fuels of the furan family, i.e. furan itself, 2-methylfuran (MF), and 2,5-dimethylfuran (DMF) are being proposed as alternatives to hydrocarbon fuels and are potentially accessible from cellulosic biomass. While some experiments and modeling results are becoming available for each of these fuels, a comprehensive experimental and modeling analysis of the three fuels under the same conditions, simulated using the same chemical reaction model, has - to the best of our knowledge - not been attempted before. The present series of three papers, detailing the results obtained in flat flames for each of the three fuels separately, reports experimental data and explores their combustion chemistry using kinetic modeling. The first part of this series focuses on the chemistry of low-pressure furan flames. Two laminar premixed low-pressure (20 and 40 mbar) flat argon-diluted (50%) flames of furan were studied at two equivalence ratios (φ = 1.0 and 1.7) using an analytical combination of high-resolution electron-ionization molecular-beam mass spectrometry (EI-MBMS) in Bielefeld and gas chromatography (GC) in Nancy. The time-of-flight MBMS with its high mass resolution enables the detection of both stable and reactive species, while the gas chromatograph permits the separation of isomers. Mole fractions of reactants, products, and stable and radical intermediates were measured as a function of the distance to the burner. A single kinetic model was used to predict the flame structure of the three fuels: furan (in this paper), 2-methylfuran (in Part Ⅱ), and 2,5-dimethylfuran (in Part Ⅲ). A refined sub-mechanism for furan combustion, based on the work of Tian et al.[Combust. Flame 158 (2011) 756-773] was developed which was then compared to the present experimental results. Overall, the agreement is encouraging. The main reaction pathways involved in furan combustion were delineated computing the rates of formation and consumption of all species. It is seen that the predominant furan consumption pathway is initiated by H-addition on the carbon atom neighboring the O-atom with acetylene as one of the dominant products.
机译:提出了呋喃家族的燃料,即呋喃本身,2-甲基呋喃(MF)和2,5-二甲基呋喃(DMF),作为烃类燃料的替代物,并可能从纤维素生物质中获得。尽管每种燃料都有一些实验和建模结果,但就我们所知,尚未尝试使用相同的化学反应模型对三种燃料在相同条件下进行全面的实验和建模分析。之前。本系列的三篇论文详细介绍了三种燃料分别在平焰中获得的结果,报告了实验数据并使用动力学模型探索了它们的燃烧化学。本系列的第一部分着重于低压呋喃火焰的化学反应。使用高分辨率电子电离分子束的分析组合,以两个当量比(φ= 1.0和1.7)研究了两个层流预混合低压(20 mbar和40 mbar),扁平氩气稀释(50%)的呋喃火焰。比勒费尔德质谱(EI-MBMS)和南希气相色谱(GC)。飞行时间MBMS具有高质量分辨率,可检测稳定和反应性物质,而气相色谱仪可分离异构体。测量反应物,产物以及稳定中间体和自由基中间体的摩尔分数,作为与燃烧器距离的函数。用单个动力学模型预测了三种燃料的火焰结构:呋喃(本文),2-甲基呋喃(Ⅱ部分)和2,5-二甲基呋喃(Ⅲ部分)。在田等人的工作的基础上,提出了一种精制的呋喃燃烧子机制。开发了Flame 158(2011)756-773],然后将其与当前的实验结果进行了比较。总体而言,该协议令人鼓舞。描绘了呋喃燃烧的主要反应途径,计算了所有物种的形成和消耗速率。可以看出,主要的呋喃消耗途径是通过以乙炔作为主要产物之一,在O原子附近的碳原子上加氢而引发的。

著录项

  • 来源
    《Combustion and Flame》 |2014年第3期|748-765|共18页
  • 作者单位

    Department of Chemistry, Bielefeld University, Universitaetsstrasse 25, D-33615 Bielefeld, Germany;

    Department of Chemistry, Bielefeld University, Universitaetsstrasse 25, D-33615 Bielefeld, Germany;

    Laboratoire Reactions et Genie des Procedes (LRGP), CNRS, Universite de Lorraine, ENSIC, 1 rue Grandville, BP 20451, 54001 Nancy Cedex, France;

    Department of Chemistry, Bielefeld University, Universitaetsstrasse 25, D-33615 Bielefeld, Germany;

    Department of Chemistry, Bielefeld University, Universitaetsstrasse 25, D-33615 Bielefeld, Germany,German Aerospace Center (DLR), Institute of Combustion Technology, Pfaffenwaldring 38-40, D-70569 Stuttgart, Germany;

    Department of Chemistry, Bielefeld University, Universitaetsstrasse 25, D-33615 Bielefeld, Germany,German Aerospace Center (DLR), Institute of Combustion Technology, Pfaffenwaldring 38-40, D-70569 Stuttgart, Germany;

    Department of Chemistry, Bielefeld University, Universitaetsstrasse 25, D-33615 Bielefeld, Germany;

    Department of Chemistry, Bielefeld University, Universitaetsstrasse 25, D-33615 Bielefeld, Germany;

    Laboratoire Reactions et Genie des Procedes (LRGP), CNRS, Universite de Lorraine, ENSIC, 1 rue Grandville, BP 20451, 54001 Nancy Cedex, France;

    Laboratoire Reactions et Genie des Procedes (LRGP), CNRS, Universite de Lorraine, ENSIC, 1 rue Grandville, BP 20451, 54001 Nancy Cedex, France;

    Laboratoire Reactions et Genie des Procedes (LRGP), CNRS, Universite de Lorraine, ENSIC, 1 rue Grandville, BP 20451, 54001 Nancy Cedex, France;

    Laboratoire Reactions et Genie des Procedes (LRGP), CNRS, Universite de Lorraine, ENSIC, 1 rue Grandville, BP 20451, 54001 Nancy Cedex, France;

    Department of Chemistry, Bielefeld University, Universitaetsstrasse 25, D-33615 Bielefeld, Germany;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Furan; Low-pressure flame; Detailed kinetic model; Quantum cascade laser thermometry; Molecular-beam mass spectrometry; Gas chromatography;

    机译:呋喃;低压火焰;详细的动力学模型;量子级联激光测温;分子束质谱;气相色谱法;
  • 入库时间 2022-08-18 00:11:30

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号