首页> 外文期刊>Combinatorica >Read-Once Branching Programs, Rectangular Proofs of the Pigeonhole Principle and the Transversal Calculus
【24h】

Read-Once Branching Programs, Rectangular Proofs of the Pigeonhole Principle and the Transversal Calculus

机译:一次性分支程序,信鸽原理的矩形证明和横向微积分

获取原文
获取原文并翻译 | 示例

摘要

We investigate read-once branching programs for the following search problem: given a Boolean m × n matrix with m > n, find either an all-zero row, or two 1’s in some column. Our primary motivation is that this models regular resolution proofs of the pigeonhole principle $ PHP^{m}_{n} $ , and that for m > n 2 no lower bounds are known for the length of such proofs. We prove exponential lower bounds (for arbitrarily large m!) if we further restrict this model by requiring the branching program either to finish one row of queries before asking queries about another row (the row model) or put the dual column restriction (the column model).
机译:我们针对以下搜索问题研究一次读取分支程序:给定一个布尔m×n矩阵,且m> n,则找到全零行或某列中的两个1。我们的主要动机是,它为信鸽原理$ PHP ^ {m} _ {n} $建模常规分辨率证明,并且对于m> n 2 ,此类证明的长度没有下界。如果我们通过要求分支程序在查询另一行之前完成一行查询(行模型)或放置双列限制(该列)来进一步限制该模型,则证明了指数下界(对于任意大的m!)模型)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号