首页> 外文期刊>Cognitive computation >Recruitment and Consolidation of Cell Assemblies for Words by Way of Hebbian Learning and Competition in a Multi-Layer Neural Network
【24h】

Recruitment and Consolidation of Cell Assemblies for Words by Way of Hebbian Learning and Competition in a Multi-Layer Neural Network

机译:多层神经网络中基于Hebbian学习和竞争的单词单元集合的招募和合并

获取原文
获取原文并翻译 | 示例

摘要

Current cognitive theories postulate either localist representations of knowledge or fully overlapping, distributed ones. We use a connectionist model that closely replicates known anatomical properties of the cerebral cortex and neurophysiological principles to show that Hebbian learning in a multi-layer neural network leads to memory traces (cell assemblies) that are both distributed and anatomically distinct. Taking the example of word learning based on action-perception correlation, we document mechanisms underlying the emergence of these assemblies, especially (ⅰ) the recruitment of neurons and consolidation of connections defining the kernel of the assembly along with (ⅱ) the pruning of the cell assembly's halo (consisting of very weakly connected cells). We found that, whereas a learning rule mapping covariance led to significant overlap and merging of assemblies, a neuro-biologically grounded synaptic plasticity rule with fixed LTP/LTD thresholds produced minimal overlap and prevented merging, exhibiting competitive learning behaviour. Our results are discussed in light of current theories of language and memory. As simulations with neurobiologi-cally realistic neural networks demonstrate here spontaneous emergence of lexical representations that are both cortically dispersed and anatomically distinct, both localist and distributed cognitive accounts receive partial support.
机译:当前的认知理论假定知识的本地化表示或完全重叠的分布式表示。我们使用连接模型来紧密复制大脑皮质和神经生理原理的已知解剖结构,以表明在多层神经网络中的Hebbian学习会导致记忆轨迹(细胞装配体)既分散又在解剖学上不同。以基于动作-感知相关性的单词学习为例,我们记录了这些程序集出现的基础机制,特别是(ⅰ)募集神经元和连接的合并定义了程序集的内核,以及(ⅱ)对程序集的修剪。电池组件的光环(由连接非常弱的电池组成)。我们发现,虽然学习规则映射的协方差导致程序集的显着重叠和合并,但具有固定LTP / LTD阈值的神经生物学的突触可塑性规则产生的重叠最小,并防止合并,表现出竞争性学习行为。根据当前的语言和记忆理论讨论了我们的结果。正如使用神经生物学现实神经网络进行的仿真所证明的那样,词汇表述自发地出现,它们既是皮层分散的,又是解剖学上截然不同的,局部和分布式认知帐户都得到了部分支持。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号