首页> 外文期刊>Cognitive Computation and Systems >Bio-inspired evolutionary computing approach for distributed active noise control problem
【24h】

Bio-inspired evolutionary computing approach for distributed active noise control problem

机译:生物启发进化的进化计算方法,用于分布式主动噪声控制问题

获取原文
获取原文并翻译 | 示例

摘要

In this study, a distributed active noise control (DANC) system for spatial noise control in a network of acoustic sensor nodes based on the behavioural traits of felines is presented. An unified strategy based on incremental co-operative learning and cat swarm intelligence is proposed for noise mitigation in spatial region. The hybrid nature of the proposed incremental cat swarm optimisation (ICSO) algorithm provides efficient noise control without prior estimation of multiple secondary paths. In the developed ICSO-based DANC scheme, the individual sensor nodes communicate the intermediate solutions using incremental mode of cooperation to attain overall global noise mitigation over the distributed network. The performance of the proposed ICSO based DANC scheme is validated for tonal, broadband and practical air conditioner noise control test scenarios. Evaluation results show that the proposed system achieves faster convergence with computational efficiency of over 36% and ∼2–9 dB improvement in noise cancellation for different noise cases and acoustic environments over genetic algorithm and particle swarm optimisation based DANC counterparts.
机译:在该研究中,提出了一种基于诸如Felines的行为特征的声学传感器节点网络中的分布式主动噪声控制(DANC)系统。基于增量合作学习和猫群智能的统一策略被提出用于空间区域的噪音缓解。所提出的增量CAT群优化(ICSO)算法的混合性质提供了有效的噪声控制,而无需先前估计多个次要路径。在开发的基于ICSO的DANC方案中,各个传感器节点使用增量协作模式传达中间解决方案,以获得通过分布式网络的整体全局噪声缓解。建议的基于ICSO的DANC方案的性能验证了色调,宽带和实用空调噪声测试方案。评价结果表明,该系统的噪声消除噪声消除的计算效率达到了超过36%和〜2-9 dB的计算效率,对遗传算法和基于粒子群优化的DANC算法的噪声消除,达到了36%以上的计算效率和〜2-9 dB的改善。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号