首页> 外文期刊>Circuits, systems, and signal processing >Spotting and Recognition of Consonant-Vowel Units from Continuous Speech Using Accurate Detection of Vowel Onset Points
【24h】

Spotting and Recognition of Consonant-Vowel Units from Continuous Speech Using Accurate Detection of Vowel Onset Points

机译:利用元音起始点的精确检测从连续语音中识别和识别辅音元音单元

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we propose an efficient approach to spotting and recognition of consonant-vowel (CV) units from continuous speech using accurate detection of vowel onset points (VOPs). Existing methods for VOP detection suffer from lack of high accuracy, spurious VOPs, and missed VOPs. The proposed VOP detection is designed to overcome most of the shortcomings of the existing methods and provide accurate detection of VOPs for improving the performance of spotting and recognition of CV units. The proposed method for VOP detection is carried out in two levels. At the first level, VOPs are detected by combining the complementary evidence from excitation source, spectral peaks, and modulation spectrum. At the second level, hypothesized VOPs are verified (genuine or spurious), and their positions are corrected using the uniform epoch intervals present in the vowel regions. The spotted CV units are recognized using a two-stage CV recognizer. Two-stage CV recognition system consists of hidden Markov models (HMMs) at the first stage for recognizing the vowel category of a CV unit and support vector machines (SVMs) for recognizing the consonant category of a CV unit at the second stage. Performance of spotting and recognition of CV units from continuous speech is evaluated using Telugu broadcast news speech corpus.
机译:在本文中,我们提出了一种有效的方法,可以通过准确检测元音起始点(VOP),从连续语音中识别和识别辅音元音(CV)单元。现有的用于VOP检测的方法缺乏高精度,伪造的VOP和遗漏的VOP。提出的VOP检测旨在克服现有方法的大多数缺点,并提供VOP的精确检测,以改善CV单元的识别和识别性能。提出的VOP检测方法分两个级别进行。在第一级,通过组合来自激励源,频谱峰值和调制频谱的补充证据来检测VOP。在第二级,验证假设的VOP(真实或伪造),并使用元音区域中存在的统一纪元间隔来校正其位置。使用两阶段CV识别器可以识别出斑点的CV单元。两阶段CV识别系统在第一阶段由用于识别CV单元的元音类别的隐藏马尔可夫模型(HMM)和在第二阶段用于识别CV单元的辅音类别的支持向量机(SVM)组成。使用泰卢固语广播新闻语音语料库评估从连续语音中发现和识别CV单元的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号