首页> 外文期刊>Circuits, systems, and signal processing >Adaptive Fuzzy Control of Nonlinear in Parameters Uncertain Chaotic Systems Using Improved Speed Gradient Method
【24h】

Adaptive Fuzzy Control of Nonlinear in Parameters Uncertain Chaotic Systems Using Improved Speed Gradient Method

机译:改进的速度梯度法对参数不确定混沌系统的非线性自适应模糊控制

获取原文
获取原文并翻译 | 示例

摘要

This paper presents an adaptive fuzzy controller for Nonlinear in Parameters (NLP) chaotic systems with parametric uncertainties. In the proposed controller,the unknown parameters are estimated by the novel Improved Speed Gradient (ISG) method, which is a modification of Speed Gradient (SG) algorithm. ISG employs the Lagrangian of two suitable objective functionals for on-line estimation of system parameters. The most significant advantage of ISG is that it is applicable to NLP systems and it results in a faster rate of convergence for the estimated parameters than the SG method. Estimated parameters are used to design the fuzzy controller and to calculate the Lyapunov exponents of the chaotic system adaptively. Furthermore,established on the well-known Takagi-Sugeno (T-S) fuzzy model, a LMI (Linear Matrix Inequality)-based fuzzy controller is designed and is tuned using estimated parameters and Lyapunov exponents. Throughout the controller design procedure,several important issues in fuzzy control theory including relaxed stability analysis,control input performance specifications, and optimality are taken into account. Combination of ISG parameter estimation method and T-S-based fuzzy controller yields an adaptive fuzzy controller capable to suppress uncertainties in parameters and ini tial states of NLP chaotic systems. Finally, simulation results are provided to show the effectiveness of the ISG and adaptive fuzzy controller on chaotic Lorenz system and Duffing oscillator.
机译:本文提出了一种具有参数不确定性的非线性参数混沌系统的自适应模糊控制器。在提出的控制器中,未知参数是通过新颖的改进的速度梯度(ISG)方法估计的,该方法是对速度梯度(SG)算法的改进。 ISG使用两个合适的目标函数的拉格朗日函数来在线估计系统参数。 ISG的最大优点是它适用于NLP系统,并且与SG方法相比,它导致估计参数的收敛速度更快。估计的参数用于设计模糊控制器并自适应地计算混沌系统的Lyapunov指数。此外,在著名的Takagi-Sugeno(T-S)模糊模型的基础上,设计了基于LMI(线性矩阵不等式)的模糊控制器,并使用估计参数和Lyapunov指数对其进行了调整。在整个控制器设计过程中,模糊控制理论中的几个重要问题都得到了考虑,包括宽松的稳定性分析,控制输入性能指标和最优性。 ISG参数估计方法和基于T-S的模糊控制器的结合产生了一种自适应模糊控制器,能够抑制NLP混沌系统的参数和初始状态的不确定性。最后,仿真结果表明了ISG和自适应模糊控制器在混沌Lorenz系统和Duffing振荡器上的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号