首页> 外文期刊>Circuits, systems, and signal processing >Design of IIR All-Pass Filters Using a Neural-Based Learning Algorithm
【24h】

Design of IIR All-Pass Filters Using a Neural-Based Learning Algorithm

机译:基于神经学习算法的IIR全通滤波器设计

获取原文
获取原文并翻译 | 示例

摘要

Least-squares design of infinite impulse response all-pass filter can be formulated as an eigenvector solving problem based on the Rayleigh principle. The eigenfilter is designed by solving a single eigenvector corresponding to the smallest eigenvalue of a real, symmetric, and positive-definite matrix. This paper proposes a minor component analysis-based neural learning algorithm for designing eigenfilter. By appropriately mapping the associated all-pass filter specifications to the simple neural model enables the filter coefficients to be derived from the neural weights. The neural weights eventually approach the optimal filter coefficients of the eigenfilter when the neural model achieves convergence. The proposed neural learning algorithm is demonstrated from simulation results to converge rapidly and achieve accurate performance of eigenfilter design.
机译:无限脉冲响应全通滤波器的最小二乘设计可以表达为基于瑞利原理的特征向量求解问题。通过求解对应于实数,对称和正定矩阵的最小特征值的单个特征向量来设计特征滤波器。提出了一种基于次要成分分析的神经学习算法来设计特征滤波器。通过适当地将关联的全通滤波器规格映射到简单神经模型,可以从神经权重中得出滤波器系数。当神经模型实现收敛时,神经权重最终接近特征滤波器的最优滤波器系数。仿真结果证明了所提出的神经学习算法能够快速收敛并达到特征滤波器设计的准确性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号