首页> 外文期刊>Circuits, systems, and signal processing >Soft Fault Feature Extraction in Nonlinear Analog Circuit Fault Diagnosis
【24h】

Soft Fault Feature Extraction in Nonlinear Analog Circuit Fault Diagnosis

机译:非线性模拟电路故障诊断中的软故障特征提取

获取原文
获取原文并翻译 | 示例

摘要

Aiming at the problem to diagnose soft faults in nonlinear analog circuits, a novel approach to extract fault features is proposed. The approach is based on the Wigner-Ville distribution (WVD) of the subband Volterra model. First, the subband Volterra kernels of the circuit under test are cleared. Then, the subband Volterra kernels are used to obtain the WVD functions. The fault features are extracted from the WVD functions and taken as input data into the hidden Markov model (HMM). Finally, with classification of features using HMMs, the soft fault diagnosis of the nonlinear analog circuit is achieved. The simulations and experiments show that the method proposed in this paper can extract the fault features effectively and improve the fault diagnosis.
机译:针对非线性模拟电路中的软故障诊断问题,提出了一种提取故障特征的新方法。该方法基于子带Volterra模型的Wigner-Ville分布(WVD)。首先,清除被测电路的子带Volterra内核。然后,将子带Volterra内核用于获得WVD函数。从WVD函数中提取故障特征,并将其作为输入数据输入到隐马尔可夫模型(HMM)中。最后,通过使用HMM对特征进行分类,可以实现非线性模拟电路的软故障诊断。仿真和实验表明,本文提出的方法可以有效地提取故障特征,改善故障诊断能力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号