首页> 外文期刊>Circuits, systems, and signal processing >Fourier-Based Feature Extraction for Classification of EEG Signals Using EEG Rhythms
【24h】

Fourier-Based Feature Extraction for Classification of EEG Signals Using EEG Rhythms

机译:基于傅立叶特征提取的脑电节律脑电信号分类

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we propose a method for the analysis and classification of electroencephalogram (EEG) signals using EEG rhythms. The EEG rhythms capture the nonlinear complex dynamic behavior of the brain system and the nonstationary nature of the EEG signals. This method analyzes common frequency components in multichannel EEG recordings, using the filter bank signal processing. The mean frequency (MF) and RMS bandwidth of the signal are estimated by applying Fourier-transform-based filter bank processing on the EEG rhythms, which we refer intrinsic band functions, inherently present in the EEG signals. The MF and RMS bandwidth estimates, for the different classes (e.g., ictal and seizure-free, open eyes and closed eyes, inter-ictal and ictal, healthy volunteers and epileptic patients, inter-ictal epileptogenic and opposite to epileptogenic zone) of EEG recordings, are statistically different and hence used to distinguish and classify the two classes of signals using a least-squares support vector machine classifier. Experimental results, with 100% classification accuracy, on a real-world EEG signals database analysis illustrate the effectiveness of the proposed method for EEG signal classification.
机译:本文提出了一种利用脑电节律对脑电图信号进行分析和分类的方法。脑电节律捕获脑系统的非线性复杂动态行为和脑电信号的非平稳性质。该方法使用滤波器组信号处理来分析多通道EEG记录中的公共频率分量。通过对EEG节奏应用基于傅立叶变换的滤波器组处理来估计信号的平均频率(MF)和RMS带宽,我们将其称为EEG信号固有的固有频带函数。针对不同类别的脑电图(例如,无发作和无癫痫发作,睁开眼睛和闭眼,发作间和发作,健康志愿者和癫痫患者,发作间和癫痫发作区)的MF和RMS带宽估计记录在统计上是不同的,因此使用最小二乘支持向量机分类器来区分两类信号。在真实的EEG信号数据库分析中,具有100%的分类精度的实验结果说明了所提出的EEG信号分类方法的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号