首页> 外文期刊>Circuits, systems, and signal processing >Improved i-Vector Representation for Speaker Diarization
【24h】

Improved i-Vector Representation for Speaker Diarization

机译:改进的i-Vector表示以实现说话人区分

获取原文
获取原文并翻译 | 示例

摘要

This paper proposes using a previously well-trained deep neural network (DNN) to enhance the i-vector representation used for speaker diarization. In effect, we replace the Gaussian mixture model typically used to train a universal background model (UBM), with a DNN that has been trained using a different large-scale dataset. To train the T-matrix, we use a supervised UBM obtained from the DNN using filterbank input features to calculate the posterior information and then MFCC features to train the UBM instead of a traditional unsupervised UBM derived from single features. Next we jointly use DNN and MFCC features to calculate the zeroth- and first-order Baum-Welch statistics for training an extractor from which we obtain the i-vector. The system will be shown to achieve a significant improvement on the NIST 2008 speaker recognition evaluation telephone data task compared to state-of-the-art approaches.
机译:本文提出使用先前训练有素的深度神经网络(DNN)来增强用于说话人二值化的i矢量表示。实际上,我们用已使用其他大规模数据集训练的DNN代替了通常用于训练通用背景模型(UBM)的高斯混合模型。为了训练T矩阵,我们使用从DNN获得的监督UBM,使用滤波器组输入特征来计算后验信息,然后使用MFCC特征来训练UBM,而不是使用传统的不受监督的单一特征来监督UBM。接下来,我们结合使用DNN和MFCC功能来计算零阶和一阶Baum-Welch统计信息,以训练提取器,从中获得i向量。与最先进的方法相比,该系统将显示出对NIST 2008说话者识别评估电话数据任务的显着改善。

著录项

  • 来源
    《Circuits, systems, and signal processing》 |2016年第9期|3393-3404|共12页
  • 作者单位

    Univ Sci & Technol China, Natl Engn Lab Speech & Language Informat Proc, Hefei, Peoples R China;

    Univ Kent, Sch Comp, Medway Campus, Chatham, Kent, England;

    Univ Sci & Technol China, Natl Engn Lab Speech & Language Informat Proc, Hefei, Peoples R China;

    Univ Sci & Technol China, Natl Engn Lab Speech & Language Informat Proc, Hefei, Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Speaker diarization; DNN; i-vector;

    机译:说话人二值化;DNN;i-vector;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号