首页> 外文期刊>Circuits, systems, and signal processing >Novel ECG Signal Classification Based on KICA Nonlinear Feature Extraction
【24h】

Novel ECG Signal Classification Based on KICA Nonlinear Feature Extraction

机译:基于KICA非线性特征提取的新型心电信号分类

获取原文
获取原文并翻译 | 示例

摘要

Electrocardiogram (ECG) signal feature extraction is important in diagnosing cardiovascular diseases. This paper presents a new method for nonlinear feature extraction of ECG signals by combining principal component analysis (PCA) and kernel independent component analysis (KICA). The proposed method first uses PCA to decrease the dimensions of the ECG signal training set and then employs KICA to calculate the feature space for extracting the nonlinear features. Support vector machine (SVM) is utilized to determine the nonlinear features of the ECG signal classification. Genetic algorithm is also used to optimize the SVM parameters. The proposed method is advantageous because it does not require a huge amount of sampling data, and this technique is better than traditional strategies to select optimal features in the multi-domain feature space. Computer simulations reveal that the proposed method yields more satisfactory classification results on the MIT-BIH arrhythmia database, reaching an overall accuracy of 97.78 %.
机译:心电图(ECG)信号特征提取在诊断心血管疾病中很重要。本文结合主成分分析(PCA)和核独立成分分析(KICA),提出了一种心电信号非线性特征提取的新方法。提出的方法首先使用PCA来减小ECG信号训练集的大小,然后使用KICA来计算特征空间以提取非线性特征。支持向量机(SVM)用于确定ECG信号分类的非线性特征。遗传算法也用于优化SVM参数。所提出的方法是有利的,因为它不需要大量的采样数据,并且该技术优于在多域特征空间中选择最佳特征的传统策略。计算机仿真表明,该方法在MIT-BIH心律失常数据库上产生了更令人满意的分类结果,总体准确率达到97.78%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号