首页> 外文期刊>Circuits, systems, and signal processing >Direct Position Determination of Multiple Noncircular Sources with a Moving Array
【24h】

Direct Position Determination of Multiple Noncircular Sources with a Moving Array

机译:具有移动阵列的多个非圆形光源的直接位置确定

获取原文
获取原文并翻译 | 示例

摘要

Compared with conventional two-step localization methods, direct position determination (DPD) is a promising technique that offers superior performance under low signal-to-noise ratio conditions. However, existing DPD methods mainly focus on complex circular sources without considering noncircular signals, which can be exploited to enhance the localization accuracy. This study proposes an improved subspace data fusion (SDF)-based DPD algorithm for multiple noncircular sources with a moving array. By constructing and decomposing the extended covariance matrices, extended noise subspaces are obtained for all positions of the moving array. The source positions are then directly estimated by fusing the extended noise subspaces without computing the intermediate parameters, thereby avoiding the data association problem inherent in two-step methods. Our proposed DPD algorithm combines the low complexity of SDF with the high robustness to noise and sensor errors that comes from exploiting signal noncircularity. Specifically, a closed-form expression for the localization mean square error (MSE) of the algorithm and the stochastic Cram,r-Rao bound for strict-sense noncircular signals are derived. Simulation results validate our theoretical prediction for MSE and also demonstrate that the proposed algorithm outperforms other localization methods in terms of accuracy and capacity to resolve noncircular sources.
机译:与传统的两步定位方法相比,直接位置确定(DPD)是一种有前途的技术,可在低信噪比条件下提供出色的性能。但是,现有的DPD方法主要关注复杂的圆形源,而没有考虑非圆形信号,可以用来提高定位精度。这项研究提出了一种改进的基于子空间数据融合(SDF)的DPD算法,用于带有移动阵列的多个非圆形源。通过构造和分解扩展的协方差矩阵,可以为移动阵列的所有位置获得扩展的噪声子空间。然后通过融合扩展的噪声子空间直接估算源位置,而无需计算中间参数,从而避免了两步法固有的数据关联问题。我们提出的DPD算法将SDF的低复杂度与对噪声和传感器误差的高鲁棒性相结合,而噪声和传感器误差是由于信号非圆度引起的。具体而言,推导了该算法的定位均方误差(MSE)的闭式表达式以及严格感知的非圆形信号的随机Cram,r-Rao界。仿真结果验证了我们对MSE的理论预测,并证明了该算法在解析非圆形源的准确性和能力方面优于其他本地化方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号