首页> 外文期刊>Circuits, systems, and signal processing >Recursive Least Squares and Multi-innovation Stochastic Gradient Parameter Estimation Methods for Signal Modeling
【24h】

Recursive Least Squares and Multi-innovation Stochastic Gradient Parameter Estimation Methods for Signal Modeling

机译:信号建模的递推最小二乘和多创新随机梯度参数估计方法

获取原文
获取原文并翻译 | 示例

摘要

The sine signals are widely used in signal processing, communication technology, system performance analysis and system identification. Many periodic signals can be transformed into the sum of different harmonic sine signals by using the Fourier expansion. This paper studies the parameter estimation problem for the sine combination signals and periodic signals. In order to perform the online parameter estimation, the stochastic gradient algorithm is derived according to the gradient optimization principle. On this basis, the multi-innovation stochastic gradient parameter estimation method is presented by expanding the scalar innovation into the innovation vector for the aim of improving the estimation accuracy. Moreover, in order to enhance the stabilization of the parameter estimation method, the recursive least squares algorithm is derived by means of the trigonometric function expansion. Finally, some simulation examples are provided to show and compare the performance of the proposed approaches.
机译:正弦信号广泛用于信号处理,通信技术,系统性能分析和系统识别。通过使用傅立叶展开,可以将许多周期信号转换成不同谐波正弦信号的总和。本文研究了正弦组合信号和周期信号的参数估计问题。为了进行在线参数估计,根据梯度优化原理推导了随机梯度算法。在此基础上,通过将标量创新扩展为创新向量,提出了一种多创新随机梯度参数估计方法,以提高估计精度。此外,为了增强参数估计方法的稳定性,借助于三角函数展开来推导最小二乘算法。最后,提供了一些仿真示例,以显示和比较所提出方法的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号