首页> 外文期刊>Circuits, systems, and signal processing >Joint Parameter and State Estimation Based on Marginal Particle Filter and Particle Swarm Optimization
【24h】

Joint Parameter and State Estimation Based on Marginal Particle Filter and Particle Swarm Optimization

机译:基于边际粒子滤波和粒子群算法的联合参数和状态估计

获取原文
获取原文并翻译 | 示例

摘要

In this paper, a method for the dual estimation is proposed. This approach combines extended marginal particle filter (EMPF) with particle swarm optimization (PSO) for simultaneous estimation of state and parameter values in nonlinear stochastic state-space models. In the proposed method, the states are estimated by EMPF and the parameters are estimated by PSO. The performance of proposed algorithm is evaluated in two examples. Simulation results demonstrate the feasibility and efficiency of the proposed method.
机译:本文提出了一种对偶估计的方法。该方法将扩展的边际粒子滤波器(EMPF)与粒子群优化(PSO)结合使用,可以同时估计非线性随机状态空间模型中的状态和参数值。该方法通过EMPF估计状态,通过PSO估计参数。在两个示例中评估了所提出算法的性能。仿真结果证明了该方法的可行性和有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号