首页> 外文期刊>Circuits, systems, and signal processing >A Complex-Valued Mixing Matrix Estimation Algorithm for Underdetermined Blind Source Separation
【24h】

A Complex-Valued Mixing Matrix Estimation Algorithm for Underdetermined Blind Source Separation

机译:欠定盲源分离的复值混合矩阵估计算法

获取原文
获取原文并翻译 | 示例

摘要

This paper considers complex-valued mixing matrix estimation in underdetermined blind source separation. An effective estimation algorithm based on both single-source-point (SSP) detection and modified dynamic data field clustering is proposed. First, array-processing-based time-frequency SSP detection is applied to improve signal sparsity, therein utilizing the real and imaginary components of the observed signals in the time-frequency domain. The algorithm can be applied to the estimation of complex-valued mixing matrix based on L-shaped arrays and uniform circular arrays. Then, to overcome the limitation that the clustering performance of traditional algorithms is affected by noise, data cleansing detection is introduced to reselect the SSPs with high potential energy as representative objects to achieve preliminary data classification. Finally, a dynamic data field clustering algorithm is adopted to move and merge the representative objects until all column vectors of the mixing matrix are estimated. Simulation results show that the proposed method can effectively estimate complex-valued mixing matrices with high accuracy, especially in real-world noncooperative cases without prior knowledge.
机译:本文在不确定的盲源分离中考虑复值混合矩阵估计。提出了一种基于单源点检测和改进的动态数据域聚类的有效估计算法。首先,基于阵列处理的时频SSP检测被用于提高信号稀疏度,其中利用了时频域中观测信号的实部和虚部。该算法可应用于基于L形阵列和均匀圆形阵列的复数值混合矩阵的估计。然后,为了克服传统算法的聚类性能受噪声影响的局限性,引入数据清洗检测以重新选择具有高势能的SSP作为代表对象,以实现初步的数据分类。最后,采用动态数据场聚类算法来移动和合并代表性对象,直到估计混合矩阵的所有列向量为止。仿真结果表明,所提出的方法可以有效地高效估计复值混合矩阵,特别是在没有先验知识的现实世界中不合作的情况下。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号